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ABSTRACT: Life Cycle Assessment (LCA) methods for land use take both
occupation and transformation impacts into account. However, for wetlands and
impacts from water consumption, it is so far not possible to account for
transformation impacts. It is our goal to close this research gap, by determining
wetland recovery times and developing characterization factors for transformation.
To do this, we conducted a meta-analysis of 59 studies analyzing biodiversity
recovery in wetlands subject to passive and active restoration. Generalized linear
models were fitted to the biodiversity data and age, along with other wetland
characteristics (such as elevation, latitude, or climate class), and were used as
predictor variables. The results indicate that elevation, latitude, type of wetland,
and restoration method have the strongest effect on recovery speed. Recovery
times vary from less than one year to a maximum of 107 years with passive
restoration and 105 years with active restoration. Corresponding transformation
characterization factors vary between 10−14 and 10−2 species-eq·year2/m3. Finally, recognizing the relevance of this work to real-
world policy issues beyond LCA, we discuss the implications of our estimated restoration times on the feasibility of “biodiversity
offsetting”. Offsetting utilizes restoration to replace biodiversity value lost due to development impacts. Our work can help
stakeholders make informed decisions on whether offsetting represents a legitimate policy option in a particular context.

■ INTRODUCTION

Wetlands are, amongst others, defined as water bodies
(including e.g. marshes) that can be both natural and
human-made and can be either lotic (flowing) or lentic
(stagnant). The water can be fresh, brackish, or saline.1

Wetlands supply numerous ecosystem services, such as
retention of freshwater, regulation of hydrological flows, and
prevention of erosion.2 Nonetheless, it has been estimated that
more than 50% of all wetland areas were lost during the 20th
century,3 mainly because of drainage and land conversion and
because of freshwater withdrawals for agriculture. It has
consequently become essential to understand and quantify the
impacts of such activities on wetland biodiversity, in order to
avoid the most damaging practices and delimit biodiversity
loss.
Life Cycle Assessment (LCA) is a tool for quantifying the

environmental impacts that a certain process (or product)
entails within its life cycle,4 and it can therefore be applied
when evaluating the impacts of human actions on ecosystems.5

Life Cycle Impact Assessment (LCIA) methods for estimating
the effects of water consumption on ecosystems6,7 include one
method that takes wetlands specifically into account.8

Characterization factors (CFs) for 1184 Ramsar wetlands
(wetlands of international importance) quantify the number of
species-equivalents lost per m3/year of water consumed,
distinguishing between birds, mammals, amphibians, and
reptiles. This corresponds to an “occupation impact”.
Occupation CFs measure the reduction in biodiversity in a
wetland while it is being drained. Once drainage ceases, it takes
time for functional, structural, and compositional elements of
biodiversity to recover in the disrupted ecosystems (if at all).
During the recovery period, wetlands still suffer from the
negative effects of previous disturbances, and it is consequently
necessary to quantify such impacts using transformation
characterization factors. No methodology is currently available
to take transformation or permanent impacts on wetlands into
account. The time interval needed for wetlands to fully recover
their biodiversity is key for the calculation of transformation
CFs.
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For terrestrial ecosystems, a methodology exists to assess the
time-scales of biodiversity recovery,9 and the results suggest
that complete recovery may result in very long time lags. CFs
for transformation are typically calculated applying eq 1,10

where “treg” [years] represents the “time required for full
regeneration of ecosystem quality”, and “CFOcc” [species-eq·year/
m3] is the corresponding occupation CF. In the case of
wetlands, the unit indicates the loss of species because of the
extraction of 1 m3 of water during one year.

= · ·tCF
1
2

CFTrans reg Occ (1)

The above equation assumes a linear recovery of biodiversity
in time; however, Curran et al.9 adopted a logarithmic recovery
trajectory for the analysis of terrestrial ecosystems based on
empirical relationships documented in the terrestrial recovery
literature. Likewise, the review of Moreno-Mateos et al.11

suggests that recovery of restored wetlands is also nonlinear
and better approximated with a log-relationship.
Ecosystem quality in an LCA context is defined as “the

capability of an ecosystem (or a mix of ecosystems at the landscape
scale) to sustain biodiversity and to deliver services to the human
society”.10 A clear definition of ecosystem restoration is
provided by the Society for Ecological Restoration (SER) as
“the process of assisting the recovery of an ecosystem that has been
degraded, damaged, or destroyed”.12 The aim of restoration is to
approximate a reference system that represents a realistic target
based on a set of key indicators. For wetland restoration
different techniques can be implemented. Passive restoration
involves putting an end to environmental stressors (e.g.,
groundwater pumping) and letting nature take its course to re-
establish the affected area on its own. Active restoration
includes management activities that assist the ecosystem to
rebuild its diversity, such as the planting of specific vegetation,
assisted seed dispersal, or reintroduction of aquatic species.13

Wetland creation is not a form of restoration because it entails
the establishment of an aquatic ecosystem where this was not
previously present.
Recent studies have analyzed the factors (e.g., restoration

methods) that influence the speed of ecosystem recovery and
have concluded that, in created wetlands, biodiversity recovers
fastest,14 while active restoration is to be preferred to passive
restoration in order to achieve a more rapid recovery.9 Warm
climates,11 low elevations,15 and high hydrologic exchanges11

(lotic compared to lentic wetlands) are other factors that can
speed up restoration processes. These and other wetland
characteristics were examined in this study to evaluate their
effect on wetland recovery. The main underlying hypothesis
was that biodiversity shows an increase once the ecosystem is
no longer subjected to disturbance.9,11

Knowing which ecosystem characteristics affect biodiversity
loss in wetlands can help increase awareness and prevent their
further destruction. Wetland restoration is commonly
employed as part of broader environmental policies to
compensate the loss of wetland habitat due to development
(i.e., “biodiversity offsets”). The problem with such a strategy
is that, while habitat destruction is certain to take place, full
biodiversity recovery in the offset site may be inhibited, making
no net loss of biodiversity hard to obtain.16 Such difficulties
have been demonstrated in reviews of wetland mitigation
policies in the USA (e.g., ref 17). Therefore, there is a strong
impetus to understand the extent of damage caused by wetland
development, whether impacts are permanent or temporary,

and whether they can be compensated through restoration/
creation.
The objectives of this study were to (1) understand the

temporal trajectory of recovery, (2) develop a model to
estimate wetland recovery times, (3) identify which wetland
characteristics lead to a faster recovery compared to other
features, (4) quantify success and failure rates of wetland
remediation, and (5) develop a methodology (applicable in
LCA) to assess wetland transformation impacts.

■ METHODS
Literature Search. We built a database with results of

peer-reviewed papers and reports in which restoration or
creation of aquatic habitats was carried out in different parts of
the world. Two existing databases2,11 were investigated, and a
literature search was carried out on Google Scholar (June
2015) with the following words: “(biodiversity OR aquatic
ecosystem) AND (ecological compensation OR habitat
banking OR offsets OR recovery OR ecosystem rehabilitation
OR restoration ecology OR secondary growth)”. In order to be
selected, the studies had to meet the following criteria:

- Availability of biodiversity measures from an ecosystem
that was being restored, and from an undisturbed
(reference) ecosystem, to enable a direct comparison.
Reference ecosystems were those with no signs of major
anthropogenic disturbance either at the time of the study
or through its known history.
- Measured ecological responses at known time intervals
since the beginning of restoration, both in the ecosystem
being restored and in the reference system.
- Spatial independence of biodiversity measurements to
fulfill the assumptions of the statistical tests applied. To
consider samples to be spatially independent they had to
be a minimum distance apart. This minimum distance
was dependent on the species class and was maintained
throughout the different studies, e.g. plants had to be at
least 50 m apart in order to be considered independent
samples (for all minimum distances, see Supporting
Information (SI1), section S1). If these criteria were not
met, data were aggregated or taken from only one of the
sites.

Response Ratio. The biodiversity indicators used in this
study to evaluate whether restoration was successful included
richness, evenness, and diversity (see SI1, section S2 for the list
of indicators). Biodiversity values, measured at the same time
in the restored and reference habitats, were used for the
calculation of a response ratio (RR), defined as the ratio
between a measured quantity in an experimental group (in our
case the restored habitat) and one in a control group (the
reference habitat). As the measured quantity we used one of
the biodiversity indicators. It is advisible to use the logarithm
of the RR when carrying out statistical analyses (eq 2),18

because deviations in the numerator are treated in the same
way as deviations in the denominator, but the simple ratio is
affected more by changes in the denominator.

=
i
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ln(RR ) lni

i

i

,rest

,ref (2)

‘xi,rest’ is the biodiversity value measured at time ‘i’ in the
restored wetland, and ‘xi,ref’ is the one of the corresponding
reference habitat.
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Negative values of ‘ln(RRi)’ indicate that, between restored
and reference habitat, biodiversity is lower in the ecosystem
which is being restored. Positive values indicate higher
biodiversity in the wetland which is being restored. A value
of ln(RRi) = 0 means that biodiversity is equal both in restored
and reference habitat. The time interval between the start of
the restoration and when the zero value is reached represents
the time needed for complete biodiversity recovery. Complete
biodiversity recovery means that the biodiversity indicators of
the restored wetland equal those of the reference wetland.
Background changes in the reference system toward alternate
states are taken into account during the construction of the
response ratio.
The biodiversity RRs, together with their corresponding

time of measurement (after cessation of disturbance), were
used to compute recovery trajectories for each wetland. For all
ecosystems that (1) had more than 3 biodiversity measure-
ments in time and (2) showed an overall increase in
biodiversity, linear and logarithmic trajectories were interpo-
lated to the data and their R-squared (R2) values were used to
evaluate which type of trend line had the best goodness-of-fit.
Model Predictors. In addition to biodiversity measure-

ments in time, other wetland characteristics with a potential
influence on the RR were extracted from the literature and
included as model predictors (independent variables):9,11

climate class (A - equatorial; B - arid; C - warm temperate;
D - snow), wetland type (coastal; lentic; lotic), taxon (plants;
aquatic species−including crustaceans, invertebrates, mollusks
and fish; terrestrial species−including birds and amphibians;
others−including micro-organisms), restoration type (active;
passive; creation), latitude (between 34.89° S and 65.5° N),
biodiversity metric (richness; abundance/evenness; diversity),
the time elapsed since the beginning of restoration (referred to
as “age” hereinafter), and elevation (between sea level and
2,348 m.a.s.l.; our database did not include wetlands located in
the interval 1,200−2,300 m.a.s.l. due to unavailability of data).
Except for age, all variables were modeled as categorical
predictors. Elevation was divided into 9 categories, while
latitude was taken as its absolute value and divided into 6
categories. A category was defined as having at least 20 and a
maximum of 200 data points.
An example of the database structure is presented in the SI1,

section S3.
Implementation of Generalized Linear Models

(GLMs). The information contained in our database was
used to build a linear model with the purpose of predicting
ecosystem recovery times (eq 3).

= + · + · + + ·y a b x c x n x... n1 2 (3)

Variable ‘y’ is the logarithm of the biodiversity RR (ln(RR)),
and ‘x1...xn’ are the different predictors. Factor “a” - the
intercept of the model - and factors ‘b···n’ - the coefficients of
the predictors - were obtained from the statistical analysis
described in the following paragraph. By using the inverse of eq
3, it was possible to understand whether wetlands could reach
reference levels of biodiversity or not and at what speed such
recovery took place (see SI1 section S4 for more details).
The statistical analysis of the database was carried out using

R and the R-Studio environment.19,20 We used the “corrgrams”
package21 to test the correlation among all predictors. The
statistical modeling included four main phases: 1) resampling
of the data points, 2) fitting of generalized linear models
(GLMs), 3) model selection based on the Akaike Information

Criterion (AIC), and 4) model averaging. The outputs of these
different steps were the coefficients of the linear model and the
importance values for each predictor.
One data point (i.e., one row of the database) of each study

was randomly selected and inserted into a set. Sample size of
the set equaled the number of studies taken into account, i.e.
each set had 59 data points. This procedure was repeated
10,000 times (resulting in 10,000 sets) in order to avoid
pseudoreplication and bias caused by the clustering of data
within single studies.22 A GLM, including all predictor
variables (referred to as “full GLM”), was fitted to each one
of the 10,000 resampled data sets. The resulting coefficients
(one for each predictor category) and the deviance explained
(DE) were recorded for each of the 10,000 sets. In each
iteration, if the coefficient estimate of the “age” predictor was
negative, the coefficients of all other predictors of the same
iteration were taken out of the results. This was done because
the coefficients of these runs would result in models in which
biodiversity would not converge to reference values, and, as
such, they were considered to be an indication of restoration
failure.9 Coefficient estimates of iterations that showed a poor
predictive ability, defined as having a value of the deviance
explained lower than 10%, were also excluded.
As a last step, estimates of the coefficients resulting from the

GLM fitting were averaged across the iterations that had
positive age coefficients and an explained deviance above 10%,
obtaining one unique coefficient value for each category of the
predictors.

Importance Values of the Predictors. Importance values
were calculated for the independent variables using the
“glmulti” package23 in R and can be interpreted as the
probability that each predictor is a component of the model
that best represents the data. For each of the 10,000 iterations,
the full GLM formulas were broken up into a series of simpler
formulas by excluding one or more predictors each time, and
such simplified GLMs were then fitted to the corresponding
data set of the original full GLM. The “glmulti” package uses a
genetic algorithm (GA) to find the best of these simpler
models without having to try all possible combinations of the
predictors. The corrected Akaike Information Criterion
(AICc) was used to compare complexity and explanatory
power of the generated models, which were then ranked
according to its value: the lower the AICc value, the better the
model and the higher its ranking. The GA stops when
improvements in the AICc value of the last generation of
models is below a certain target. Once all models were ranked,
the deviance explained of the best model for each iteration was
recorded. The AICc values were then implemented by
“glmulti” to define the relative evidence weights (wi) of each
of the i-th simpler models: wi = exp(−(AICci − AICcbest)),
where the AICc value of the best-performing model is
subtracted from the AICc value of each i-th generated
model, resulting in the fact that, the smaller the difference,
the closer wi is to 1. The relative evidence weights were
normalized so that their sum added up to one. The importance
values of the predictors were computed, per iteration, as the
sum of the normalized evidence weights of all the best 100
models in which such a predictor appeared. The 10,000 values
were then averaged across iterations using the same method as
the one used for the coefficient estimates. A 15% threshold for
importance values was applied: all predictors with a higher
percentage (importance value >0.15) should be maintained in
the model, while those with a lower value (importance value
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<0.15) should be discarded. This cutoff point was selected
arbitrarily. A scheme of the steps carried out as part of the
statistical analysis is presented in the SI1, section S5.
Validation. In order to check how well the model was able

to reproduce observed recovery trajectories, 20% of the data
points were taken out of the database, and the statistical
analysis was carried out using the remaining 80% of the
database. The studies excluded from the model fitting phase
were selected to be representative of each predictor category.
Random selection was not possible because of data scarcity
regarding some categories of the predictors. Only two
validation steps were performed, i.e. two sets of data points
were excluded. R-squared and the Nash-Sutcliffe coefficient
were used as indicators of model performance.
Transformation CFs. Having estimated the model

coefficients, it was possible to back-calculate recovery times

by imposing equal biodiversity between restored and reference
habitat, i.e. ln(RR) = 0. Transformation characterization
factors were then calculated for 1184 Ramsar wetlands, using
eq 1 and existing wetland occupation CFs8 for birds and
amphibians. Transformation CFs were also calculated assum-
ing a logarithmic recovery trajectory. This was achieved using
eq 4

= · − · ·t tCF CF ( const 0.9 )Trans Occ reg reg
1.11

(4)

where “treg” [years] represents the “time required for full
regeneration of ecosystem quality”, and “CFOcc” [species-eq·year/
m3] is the corresponding occupation CF. The value of “const”
is wetland-specific and was derived following the methodology
presented in the SI1, section S6, part B.
The unit for transformation CFs of wetlands is [species-eq·

year2/m3]. When the transformation CF is multiplied by the

Figure 1. Coefficient estimates of all predictor categories together with their 95% confidence interval. All coefficient values of the categorical
predictors are presented relative to the reference category of such predictor, which, by default, has a coefficient value equal to 0. Reference
categories (not present in the figure) are Restoration Type: Active; Elevation [m.a.s.l.]: 0−10; Climate class: A; Latitude [°]: 0−20; Biodiversity
Metric: Abundance/Evenness; Taxon: Aquatic; Wetland Type: Coastal. If a category has a positive coefficient, this means that it recovers faster
than the reference category, the opposite if the coefficient is negative.
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flow of water [m3/year] going to the wetland once occupation
has ceased, the result is the transformation impact [species-eq·
year], which is compatible with transformation impacts in the
land use impact category.24 The flow of water in m3/year
indicates the amount of water flowing back to the wetland and
transforming it to a more natural state, once water is no longer
consumed or extracted.

■ RESULTS

Database Characteristics. Of the studies present in the
database,2 12 met the selection criteria, while 27 studies were
selected from ref 11. In addition, 20 papers were added from
our literature search (see SI1, section S7). It was often the case
that more than one restored/created ecosystem was compared
with the same reference ecosystem, resulting in 307 restored/
created habitats versus 259 reference habitats. The entire
database (see Supporting Information 2) consists of 500 data
points. 319 of the biodiversity measurements were taken in the
first five years after cessation of disturbance; the longest time
span between a measurement and cessation of disturbance was
55 years. Measurements of richness were the most common
(266 data points), followed by diversity (146 data points) and
abundance/evenness (88 data points). The majority of data
points came from coastal wetlands (271 data points), followed
by lotic (121 data points) and lentic ecosystems (108 data
points) (for details see also SI1, section S8). Two categories of
the elevation predictor (900−1,200 m.a.s.l. and 2,300−2,400
m.a.s.l.) did not reach the minimum number of 20 data points
but were kept because they represented the behavior of
ecosystems at high elevations, necessary for verifying the
hypothesis that recovery times are longer at higher altitudes.
When analyzing the biodiversity recovery trajectories in

time, logarithmic interpolations showed a higher R2 value in
60% of the wetlands, compared to linear interpolation.
Consequently, it was deemed appropriate to use ‘ln(age)’ as
a predictor (instead of “age”) in order to obtain estimated
trajectories with a logarithmic trend (see SI1, section S9 for
examples of goodness-of-fit).
Model Coefficients. Of the 10,000 GLM models, 8,658

models showed a positive age coefficient, meaning that
restoration was successful and induced a positive biodiversity
response with time. None of the models had values of the
deviance explained lower than 10%, and the average DE out of
the 10,000 runs was 55%.
The validation step resulted in a Nash-Sutcliffe coefficient of

0.042 and an R2 value of 25%. Most of the time the observed
data points did not all lie within the confidence interval (SI1,
section S10). However, the model did well for predicting the
time to reach full biodiversity recovery, given that there was a
clear recovery trajectory. In general, these results indicate that
the model is precise in the estimation of the term ‘treg’ but not
in resembling the recovery trajectory.
Figure 1 shows the average coefficient values of models with

a positive age effect.
Below each predictor, in brackets, is the importance value.

Importance values of the predictors represent the probability of
each predictor of being included in the model that best
represents the data. The intercept has an importance value
equal to 1 because it is present in every model, so its
probability of being part of the best model is 100%. Predictors
in the figure were ordered according to their importance value.
Within the categories of the same predictor, the larger the

coefficient estimate of a category, the smaller the correspond-
ing recovery time.
The application of the coefficients for the estimation of the

recovery times and of the trajectories is illustrated here using
the example of Sand Lake Wetland (South Dakota, USA,
Figure 2).

Relevant Predictors. In order to evaluate the influence of
each predictor category on the full recovery time, predictors
were selected and changed one at a time. This allows for an
assessment of the effect of each category, independently of the
value of other predictors. The variability of the recovery times,
according to the different predictor categories, is shown in the
SI1, section S11.
The information used to understand the relevance of

predictors for the model consisted of the importance values
with a threshold equal to 0.15 and in the difference in recovery
times (calculated using the coefficient estimates) among
categories of the same predictor. If the confidence intervals
of the recovery times of two categories of the same predictor
overlapped and if the CI of the difference between their
average values contained zero, then it was concluded that there
was no statistically significant difference (α = 0.05) among the
average recovery times of such categories.
The coefficient estimates of the “Wetland type” categories

suggest that, when compared to coastal wetlands, both lentic
and lotic ecosystems have a faster recovery. There is a 17.6%
possibility that such a variable is part of the linear model that
best describes the data (importance value of 0.176). For
“Elevation” the highest coefficient is the one for the category
‘2,300−2,400 m.a.s.l.’. Since the coefficient is negative, this is
the elevation interval in which wetlands take the longest to
recover. Except for elevations between 400 m.a.s.l. and 1,200
m.a.s.l., recovery times increase with elevation. “Restoration
type” is the predictor with the highest importance value
(0.455). The negative and large coefficient estimate of the
“Passive” category shows that wetlands restored with such
practice take longer to recover than created or actively restored

Figure 2. Recovery trajectory of Sand Lake (South Dakota, USA).
The recovery trajectory was approximated by applying the coefficients
reported in Figure 1. The characteristics of the wetland were the
following: Climate class = D; Wetland type = Lentic; Elevation =
300−400 [m.a.s.l.]; Latitude = 40−50 [°]; Taxon = Terrestrial;
Biodiversity metric = Diversity; Restoration type = Active. The last
characteristic was hypothesized for demonstration purposes, because
it was assumed that, should the wetland be disturbed, it would be
restored actively. The initial recovery is very fast because of the
logarithmic hypothesis made when building the model.
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wetlands. The recovery time is 2 orders of magnitude larger
than for active restoration. The difference between actively
restored and created wetlands is not statistically significant.
The two latitude regions in which recovery times are the

longest are the ones between 20° and 30° (mainly arid
regions) and between 50° and 60° (cool temperate regions).
Recovery is fastest in equatorial regions (0°−20°), where full
recovery happens 3 orders of magnitude faster than in the
50°−60° region. Differences in recovery times in the temperate
region (35°−40° and 40°−50°) are not statistically significant.
Latitude is kept as a predictor of the model (importance value
0.224).
In the climate class A category (equatorial climates)

wetlands take the most time to recover. This is in contrast
to the coefficients of the “Latitude” predictor, which showed
that regions between 0° and 20° have a low recovery time
compared to all other regions. Such a result may be an artifact
of collinearity. The correlation matrix among predictor
categories (see SI1, section S12) shows climate class A and
latitude to be strongly collinear, i.e. correlation coefficient
greater than the common threshold of 0.7, where model
distortion may occur.25 This is because 90% of the data points
belonging to the climate class A category have a corresponding
(absolute) latitude which is below 10°. For this reason, the
results regarding the influence of this particular climate class on
the recovery times, compared to the other climate classes,
should be interpreted with caution. The importance value of
climate was 0.29, so it should be kept as a model predictor.
The confidence intervals of the recovery times of all taxa

overlap, and there is no statistically significant difference
among their average recovery times. “Taxon” is not a key
predictor for the model (importance value 0.061). Richness
and diversity recover faster than the reference category
“evenness”, but the differences among the average recovery
times of the three categories are not statistically significant
(importance value 0.164). Given that recovery times are very
similar between metrics, this predictor can be left out of the
model.
For the logarithm of age, its coefficient estimate is positive

(meaning that biodiversity increases with time), and the
confidence interval does not overlap zero. Its importance value
was the second highest out of all predictors (0.363). The time
elapsed since the beginning of restoration is therefore a
variable that must be taken into consideration.
Overview of Wetland Recovery Times. We computed

recovery times for all the Ramsar wetlands analyzed in ref 8,
with the hypotheses of active restoration (in order to evaluate
wetland response with human interventions) and passive
restoration. The values of full recovery varied from below 1
year to up to 105 years, in the case of active restoration, and up
to 107 in the case of passive restoration (Table 1).
A recovery time of less than one year is a small time span

compared with results for terrestrial habitats.9 Recovery times
reported in the literature for wetlands are also higher, on the
order of at least decades.11 The wetlands that had recovery
times closer to the ones of the mentioned studies9,11 (10−
1,000 years) were 30% of the total for active restoration. The
recovery times in the case of passive restoration were more in
line with refs 9 and 11 with 43% of wetlands having a recovery
time between 10 and 1,000 years.
Global Transformation CFs. Occupation CFs were

available for different taxa (birds, mammals, reptiles, and
amphibians) and according to whether wetlands were surface

water or groundwater fed.8 Transformation CFs were
computed for birds and amphibians but not for mammals
and reptiles because their response to restoration was not
included in our database. Transformation CFs were computed
using modeled recovery times of passively restored wetlands, in
order to have a transformation impact based on natural
recovery rates (Figure 3 and SI1, section S13).
The CFs for birds in surface water-fed wetlands (Figure 3)

vary from 10−14 to 10−2 species-eq·year2/m3. The five regions
with highest transformation CFs are characterized by high
elevations (Himalayan region, Andes and Rocky Mountains)
and/or high latitudes (Kolyma Range, Russian Far East).

■ DISCUSSION
When focusing on wetland characteristics that affect recovery
times the most, wetland type, restoration type, latitude, and
elevation were the model predictors that had the strongest
impact on recovery. Correlations between predictors were
assumed to be causal. Indicators of biodiversity were expected
to show a positive “age relationship”, meaning that biodiversity
increases with time and eventually reaches the values of natural
reference habitats. The studies by Curran et al.9 and Moreno-
Mateos et al.11 showed that biodiversity increases with time
after cessation of the disturbance. The same result was
obtained in this study.
Active restoration measures result in faster recovery

processes with respect to those achieved through passive
restoration measures,9 and created wetlands have even faster
recovery times.14 According to the results of this study, the
recovery times of passively restored wetlands are 2 orders of
magnitude bigger than in the case of active restoration. The
difference in recovery times between actively restored
ecosystems and created wetlands is, however, not statistically
significant, so the hypothesis based on the results of Korfel et
al.14 is not supported. Warmer climates were expected to
increase the speed of recovery, because of higher biological
activities.11 Indeed, our results show that wetlands in the warm
temperate region recover faster than those in “arid” and “snow”
regions. When looking at the results of the “Latitude”
predictor, it was expected that the recovery time in the 30°-
35° region (arid environments) would be of the same order of
magnitude as the 20°-30° interval, but it resulted in being 2
orders of magnitude lower. A possible explanation is that 55%
of the data points coming from the 30°-35° region were
located at an elevation below 100 m.a.s.l., which is where
recovery times are shortest. It is therefore possible that
recovery times might have been biased by the fact that not all
elevation categories were present at such latitudes.

Table 1. Orders of Magnitude of Ramsar Wetlands‘
Recovery Timesa

active restoration passive restoration

years to full
recovery

no. of
wetlands

% of
total

no. of
wetlands

% of
total

<1 445 38% 3 0.25%
1−10 290 24% 62 5%
10−100 309 26% 148 13%
100−1,000 53 4% 356 30%
1,000−10,000 41 3% 295 25%
>10,000 46 4% 320 27%

1184 1184
aPercentages do not add up to 100% because of rounding.
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Elevation is expected to slow down restoration processes
because ecosystems located at higher altitudes are generally
more fragile and less resilient to disturbance.15 Except for
elevations between 400 m.a.s.l. and 1,200 m.a.s.l., our results
confirm that recovery times increase with elevation. A scarcity
of data points could be the explanation for the decrease in
recovery times in the mentioned elevation interval. Elevation is
the only predictor for which the importance value does not
agree with the model results: an importance value of 0.061
would suggest that elevation should be excluded from the
model predictors, but the difference in recovery times at the
different altitudes clearly shows that it is a crucial factor in
determining the magnitude of the recovery time. Therefore,
elevation was maintained as a predictor. Water availability was
taken into account through two predictors: “Climate class” and
“Wetland type”. Climate classification indirectly considers both
temperature and precipitation. Wetlands characterized by a
higher hydrologic exchange (lotic environments) should
recover faster than wetlands fed mainly by precipitation or
groundwater flow (lentic environments).11 Our results do not
support this hypothesis because the recovery times of lentic
wetlands are 3.5 times smaller than those of lotic environ-
ments. According to our results, a lotic wetland should be able
to fully recover in a time interval 15 times smaller than that of
a coastal wetland. As all of the wetlands included in the
category “Coastal” were saltwater ecosystems, freshwater
wetlands seem to generally recover faster.
A substantial change was made to the procedure followed in

the statistical analysis by Curran et al.9 where the glmulti
package was used for the estimation of both the model
coefficients and their importance values. Here, basic glm was
used to obtain coefficient estimates, and glmulti was
implemented only for the evaluation of importance values.
The reason was that, when using the model coefficients
obtained from the glm fitting, the validation step gave much

better results than when using the glmulti-averaged model
coefficients.
In this study we corrected for pseudoreplication using the

method of Curran et al.9 There are other suitable approaches
for structured data analysis, such as hierarchical multilevel
models27 (MLMs) or generalized linear mixed models.28 Both
use hierarchical analyses to deal with within-cluster variation
and associated problems of pseudoreplication. Our approach
was based on multimodel (MM) averaging and inference,
which has a history of application in ecological research.29−31

The MM approach is somewhat similar to MLMs using
bootstrapping for parameter estimation,27 in that both
approaches use hierarchical analysis. The resampling algo-
rithms in MM estimate parameters through random sub-
sampling of study data points and construction of subservient
models, which are averaged to derive a global model (with
uncertainty distributions).
One of the biggest limitations of the study is that the

observed recovery trajectories used to build the database were
recorded only for a maximum of 55 years after restoration had
begun. Given that a high percentage of the predicted recovery
times was on the order of 102-103 years or above, it would be
useful to include studies in which trajectories had been
recorded for longer periods. In the absence of such long-term
investigations, this and other studies assumed that the trends
observed in the first 50 years of restoration are also indicative
for the long-term development.9

By analyzing in more detail the characteristics of the
wetlands with recovery times of less than 1 year, we observed
that elevation and latitude were the most relevant factors, in
particular category 0°-20° for latitude and elevations below
100 m.a.s.l. This is not surprising because, out of all predictors,
such categories are those whose recovery times show the
greatest variation, when shifting from one category to another.
In the case of active restoration, 173 of the 1184 investigated
wetlands showed a recovery time of less than a month, which is

Figure 3. Global transformation characterization factors for birds for 1033 surface water-fed wetlands, assuming logarithmic recovery (eq 4) and
passive restoration. As described in ref 8, the CFs are valid for the whole, individually calculated catchment that is feeding the wetland with surface
water. Underlying country map adapted from ESRI.26
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a very short time frame compared to the results of the study
carried out by Moreno Mateos et al.11 and probably the result
of an artifact. In the case of passive restoration, only three
wetlands showed a recovery time that lasted less than one year
(between 320 and 365 days). When looking at the original
database, of the 60 data points measured in the first year after
cessation of disturbance, approximately 40% showed complete
recovery (RR > 1). Low elevations were the recurring
characteristics of these wetlands, which had all undergone
active restoration.
As mentioned previously, the database did not contain

information regarding wetlands situated between 1,200 and
2,300 m.a.s.l. or above 2,400 m.a.s.l. However, some of the
Ramsar wetlands presented these characteristics, so their
recovery times were predicted using the coefficients of
elevation categories, which were closest to their actual altitude.
The most problematic aspect behind this is that, for example,
the recovery times of wetlands at 1,800 m.a.s.l. and at 4,000
m.a.s.l. were calculated using the same model coefficients,
introducing considerable uncertainty. A possible solution to
this would be to consider elevation as a continuous predictor,
which was initially done in this study for both elevation and
latitude, but this particular database gave better results in the
validation phase (higher values of Nash-Sutcliffe coefficient
and R-squared) when using elevation and latitude as
categorical predictors. Such a result may be interpreted by
looking at the influence of the predictor categories on the
recovery times (SI1, section S11). If we had modeled latitude
as a continuous variable, the coldest (high latitude) and
warmest (low latitude) areas of the planet would necessarily
have different recovery times. Our results suggest that this is
not the case and that recovery times of nonadjacent latitude
categories may be similar. Arid (20°-30°) and cool (50°-60°)
regions both have recovery times on the order of thousands of
years; while equatorial (0°-20°) and arid (20°-30°) regions,
that are adjacent in terms of latitude category, have a difference
in recovery time of 3 orders of magnitude. According to the
previously mentioned results regarding elevation, to con-
clusively establish whether it should be modeled as a
categorical or a continuous variable, we would need to fill
the data gap for high elevations.
Occupation CFs were calculated by Verones et al.8

considering drainage, and consequently area loss, as the main
disturbance to wetlands. Our database included observations
from sites that had been affected by land use change and
biological, physical, and hydrological disturbances. This last
category included drainage, so recovery times observed from
hydrologically disturbed wetlands, together with those
observed from wetlands affected by land use change, were
the most appropriate ones when calculating transformation
CFs. Nonetheless, recovery trajectories (and consequently
transformation CFs) were computed considering all types of
disturbances because it would not have been possible to build
the linear model only using data coming from wetlands that
had been subjected to drainage and land use change.
Our development of transformation CFs for wetlands allows

an analogous treatment of aquatic and terrestrial ecosystems.
For land use, occupation and transformation CFs already exist,
each with their distinct inventory flows. For wetlands and
impacts from water consumption, only occupation CFs were so
far available. However, in order for both occupation and
transformation CFs to be used for water consumption,
inventories need to be adapted too. While the occupation

impact requires the amount of water consumed (in m3),
transformation impacts require the flow of water (m3/yr). In
this paper, the proxy measure of “ecosystem quality” for
quantifying the recovery time was species richness, evenness,
and diversity. If the biodiversity indicators were the same in
two restored wetlands, the same level of ecosystem quality was
assumed. The magnitude of the transformation CFs will
depend on the occupation CF and the recovery time, thus
shorter recovery times translate into a smaller transformation
impact.
The findings of this study suggest that wetland recovery

times vary over several orders of magnitude: from less than one
year to 105 and 107 years, in the case of active and passive
restoration, respectively. This large range influences the
magnitude of transformation CFs. As in previous studies on
restoration (e.g., ref 9), the predicted results lie beyond any
range of meaningful prediction, because the calibration data
from the actual studies only extends to 55 years. Additionally,
these values are almost certainly an underestimate of the actual
recovery process, because the available data only concerned
metrics of richness, diversity, abundance, and evenness. None
of these metrics adequately reflect compositional change (i.e.,
beta diversity) of the ecological community (e.g., species
similarity metrics). Compositional recovery is known to take
longer than simple richness/diversity (e.g., ca. 1 order of
magnitude longer in ref 9). For application to LCA, this is
acceptable, because the established indicator of ecosystem
quality is based on species richness. However, to apply our
findings to other policies and practices involving ecosystem
restoration (e.g., biodiversity offsetting), a measure of caution
is required.
If the recover times are interpreted in relative terms (i.e., low

to high) a useful picture of ecosystem vulnerability emerges for
future research (i.e., areas where wetland are more likely to
suffer long-lasting or permanent damage). For example, our
model indicates that wetland diversity is most vulnerable in
areas of high elevations or at latitudes between 20°-30° and
50°-60°, such as the Andes, the Rocky Mountains, the Gobi
Desert, the Himalayan region, and the Kolyma Range. These
are areas of high species diversity and long predicted recovery
times. Future research could focus on these areas (and suitable
control regions) to validate our model predictions with local
sampling. In the meantime, our model already provides an
immediate indication of the magnitude and likelihood of
permanent damage in such areas that can be integrated into
policy tools such as LCA.
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