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Abstract: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy

(TSE) that affects members of the cervidae family. The infectious agent is a misfolded

isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade

of developmental changes that spread from cell to cell, individual to individual, and that for

some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and

vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are

under control and even declining, infection rates of CWD continue to grow and the disease

distribution continues to expand in North America and around the world. Since the first

reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26

states in the US, 3 Canadian provinces, 3 European countries and has been found in captive

cervids in South Korea. CWD causes considerable ecologic, economic and sociologic

impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or

cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of

CWD is a concern for human health and continues to be investigated. Here we review the

characteristics of the CWD prion protein, mechanisms of transmission and the role of

genetics. We discuss the characteristics that contribute to prevalence and distribution. We

also discuss the impact of CWD and review the management strategies that have been used

to prevent and control the spread of CWD.
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Introduction
Background
Chronic wasting disease (CWD) is the prion disease of the cervidae family.1 Prion

diseases—or transmissible spongiform encephalopathies (TSEs)—are a group of

progressive neurodegenerative disorders that affect animals and humans. The first

TSE was discovered in the 18th century; at the time it was a strange disease that

affected sheep, causing behavioral changes inducing excessive licking, scratching

and altered gait.2 After Scrapie was first described in 1732, other diseases with

similar neurological characteristic, such as Creutzfeldt-Jakob disease in 1920

(CJD)3,4 and Kuru5 in 1957 were identified in humans.

The agent causing these diseases was not clearly defined but was presumed to be a

viral infection of the central nervous system.6–9 By the year 1959, researchers had

linked Scrapie, Kuru and CJD by suggesting that they were related neuropathies.10,11

Eight more years passed before researchers considered that Scrapie was caused by a

proteinase agent.12–14 By the same year, 1967, a new disease named CWD was
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discovered in a farmed mule deer (Odocoileus hemionus

hemionus) in Colorado and later in mule deer and black-

tailed deer (Odocoileus hemionus columbianus) in

Colorado and Wyoming, USA;1 yet, the term TSE was far

from being used as a disease category.2

It was not until 1982 when Prusiner used the term

“prion”—derived from the words proteinaceous and infec-

tious—to describe the causative infectious agent of

Scrapie.15 The same year Prusiner and collaborators

proved that the causative agent of Scrapie was a protein.

In 1997, Prusiner and collaborators won the Nobel Prize

for the discovery of “Prions – a new biological principle of

infection” and for their contribution on prion research

development. While the consensus is that prion proteins

(denoted PrPSC from Scrapie) are the causative agents of

prion diseases, and further evidence support that PRNP—a

host gene that regulates the expression of the prion protein

PrPC—plays a crucial role in the development of TSEs,16

some researchers proposed bacterias17,18 and viruses19 as

causative agents of TSEs. However, these theories were

soon dismissed.20–22

Even though the characteristics of the TSEs disease

group are clear (Figure 1), they may present as inherited,

infectious or sporadic disorders in a variety of hosts

depending on the TSE (Table 1).23,24 Most TSEs are

under control or declining. However, CWD is on the rise

and is the only prion disease of wild free-ranging animals;25

CWD continues to affect several cervidae host species

across the world. This review will introduce the unique

characteristics of CWD and the influence of genetics. We

will focus on prevalence and distribution, and examine the

impact of CWD and suggested management strategies.

CWD Characteristics
Prion proteins (PrPC) are cell-surface glycoproteins with

predominantly α-helical conformations. PrPC is encoded

by the prion protein gene (PRNP), which is present in

almost, if not all, mammalian species. The PrPC are

expressed in several tissues and cell types,26 including

epithelial, endothelial and immune cells.27–30 Above all,

PrPC is highly expressed in neurons and neuroglial cells

of the peripheral nervous system (PNS) and central nervous

system (CNS).31,32 The infectious prion protein is the mis-

folded isoform (PrPSC) of the cellular PrPC. The posttran-

slational process that causes conformational changes from a

predominantly α-helical isoform and a coil structure to a

refolded β-pleated sheet33 confers resistance to proteases

(eg, environmental, intestinal and intracellular) that would

Figure 1 Characteristics of transmissible spongiform encephalopathies (TSEs) or prion diseases.

Notes: Conformational changes of the host prion protein structure, from α-helices in the normal cell-surface glycoprotein (PrPC) to β-sheets in the misfolded isoform

(PrPSC). Data from Doherr (2007),23 Prusiner (1998),26 Novakofski et al (2005),34 Image credit to Kerry L. Helms, Scientific Illustrator (Public domain).159

Abbreviations: PrPC, the host prion protein; PrPSC, the misfolded isoform of the host prion protein.
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otherwise destroy the protein.34 Besides resistance, the β-
sheet structure of the pathogenic PrPSC is prone to aggrega-

tion. Aggregation of PrPSC leads to the conversion of more

PrPC to PrPSC, formation of amyloid plaques and vacuoli-

zation that cause progressive neurodegeneration.35 Because

the modification from PrPC to PrPSC is posttranslational, the

amino acid sequence of both, PrPC and PrPSC (209 resi-

dues), is identical within an individual.24 Hence, there is not

a substantial immune response and inflammatory reaction to

the infection.36,37 However, chronic inflammation may con-

tribute to natural CWD transmission, as chronic inflamma-

tion may upregulate cytokines enabling PrPSC accumulation

and propagation to other tissues.34 For example, follicular

dendritic cells and mast cells express high levels of

PrPC.28,36 Expression and release of PrPC from migratory

cells, such as mast cells, may facilitate quick progress of the

infectious prion from lymphoid tissues associated with the

gastrointestinal track to the PNS, CNS and brain.28

Prions are infectious pathogens that, in the case of

CWD, can be transmitted horizontally or vertically.

Horizontal transmission is the most effective CWD trans-

mission method, with reported incidence of disease in

captive mule deer of 89%,38 and early infection detected

in lymphoid tissue along the oral and digestive system 42

days post-oral inoculation in mule deer fawns.39

Horizontal transmission includes direct contact of an

infected and susceptible animal or contact of susceptible

animals with infected saliva, feces and urine. Indirect

horizontal transmission involves environmental compo-

nents and includes oral infection by ingestion of contami-

nated grass and/or soil during grazing and dust inhalation

of infectious particles bound to soil.40,41 Based on social

networks and contact patterns among free-ranging white-

tailed deer (Odocoileus virginianus), direct contact is the

primary contributor of CWD transmission among deer.42

Scientists considered vertical transmission (in utero)

an unexpected or rare process. Researchers believed

that high neonatal mortality in deer and elk populations

coupled with the solitary nature of cervids during par-

turition reduced the importance of maternal transmis-

sion in sustaining CWD.43 However, TSEs vertical

transmission has been confirmed in sheep, cattle, felids,

humans and in transgenic mouse models.44–47 Recent

studies based on experimental models of CWD demon-

strated the transmission of CWD from doe (clinical and

sub-clinical mothers) to fawns (full-term viable, full-

term non-viable and in utero harvested offspring).48

These studies found 80% of the fetuses from CWD-

positive muntjac deer dams PrPSC positive, suggesting

previous underestimation of the transmission from

mother to offspring for all TSEs.48 Vertical transmis-

sion contributes to CWD infection in naturally exposed

elk populations.49

The development of clinical CWD can take months to

years. The incubation time—the period between exposure to

the pathogenic CWD prion to the development of clinical

signs and symptoms—in both, naturally and experimentally

infected cervids may vary from 2 to 4 years.43 Differences

in incubation periods could relate to infectious dose, route

of exposure, cervid species and/or genotype. For example,

incubation periods in orally inoculated mule deer ranged

from 3 months to 2 years, with differences in CNS accu-

mulation timing associated to genotype profiles.50 Similar

findings were reported for other cervid species; CWD-posi-

tive muntjac deer developed terminal disease in 18–24

months post-oral inoculation.69 Interestingly, viable off-

springs from those CWD-positive muntjac dams surpassed

the time usually seen for terminal disease in cervid species

(18–24 months).48 Although the maximum incubation per-

iod in free-ranging cervids is unknown, most CWD cases

have been reported in 3- to 7-year-old animals,43,51 which is

similar to the age groups of captive elk and mule deer that

succumb to CWD.1 Because the way prions spread through-

out the body, pathological changes and distribution of PrPSC

might be first identified in the lymphoreticular system and

later in the CNS, similar to what has been described for

sheep infected with scrapie.52 Retropharyngeal lymph node

(RLN) and medulla oblongata at the level of the obex are

early sites of PrPSC accumulation50 and considered gold

standard tissues for postmortem CWD detection using

immunohistochemistry (IHC). Peripheral accumulation and

the excretion of the infective prion protein have been

thought to occur only after central nervous system replica-

tion and was associated with the time of clinical disease

manifestation.53 However, recent findings identified shed-

ding in excreta concurrent with peripheral lymphoid

accumulation.54 Newer antemortem detection methods

such as serial protein misfolding cyclic amplification

(sPMCA) and real-time quaking-induced conversion (RT-

QuIC) are emerging as potential tools to detect low levels of

PrPSC in excreta and identify early accumulation of PrPSC

in peripheral tissue of sub-clinical CWD cases.49,55

A slow wasting process that leads to death charac-

terizes CWD. Clinical signs—objective evidence of dis-

ease—include polydipsia and polyuria (excessive thirst or

urination), sialorrhea (drooling or excessive salivation)
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and wasting (drastic weight loss). Behavioral changes

include listlessness, aggression, lack of fear of people

and depression.53 Signs of neurological damage at later

stages are characterized by a lack of coordination, diffi-

culty moving and ataxia (losing balance while walking).

Other distinctive characteristics associated with CWD are

drooping head and ears. The development of signs and

symptoms—subjective evidence of disease—is progres-

sive, with some of them such as polyuria and sialorrhea,

appearing at later stages of disease and contributing to the

shedding of the pathogenic PrPSC. Diagnosis based on

clinical signs and behavioral changes is not possible, as

these can be characteristics of other diseases.

Genetics
Eliminating or controlling the spread of TSEs has relied

heavily on a solid understanding of the molecular mechan-

isms of the disease. Earlier work demonstrated that a

pathogenic prion protein (PrPSc) is responsible for post-

translational conversion of the host encoded cellular prion

protein (PrPC) in several TSEs.16,24,56 The PRNP gene

which encodes the PrP protein is well conserved among

mammals,57 including cervids, and has implications for

CWD.58 Though other loci were examined for their invol-

vement (such as “Sinc”59 and Pid-160), variations in the

prion protein (PRNP) gene have been shown to affect TSE

progression61 and susceptibility.62–64 Due to this associa-

tion, much of the research on the genetics of CWD has

focused on this locus within affected cervids.

Complete genetic resistance has not yet been found for

cervids, though examination of PRNP sequences has identi-

fied variable sites that may influence an individual animal’s

susceptibility to or the rate of progression of CWD. The

inferred amino acid sequence was described in Rocky

Mountain elk (Cervus elaphus nelsoni), finding only a single

mutation of methionine (M) to leucine (L) at cervid codon

132 with elk homozygous (M/M) overrepresented among

those infected with CWD.65 Later studies demonstrated that

the L mutation causes an increase in the incubation times.66

Few studies have been published involving moose (Alces

alces) and reindeer (Rangifer tarandus) due to the rarity of

naturally occurring cases of CWD in the wild.67 Among

moose variable sites have been identified at codon 36 (N-

asparagine or T-threonine),68 109 (K-lysine or Q-glutamine),

90 and 209 (M-methionine or I-isoleucine);69,70 however, it

is unclear what protective qualities these mutations may or

may not have for CWD infection. Mule deer and white-tailed

deer have been studied extensively, likely due to the higher

prevalence of CWD among these species.

Studies of the PRNP gene in mule deer and white-tailed

deer have identified a number of mutations both in the

amino acid and nucleotide sequences. Initial studies were

complicated by an unexpressed process pseudogene in some

but not all individuals.71 Further study of the pseudogene

did not reveal any effects on CWD infection in deer and the

presence of an asparagine mutation at codon 138 is absent

in the functional gene, thereby easily distinguishing the

two.72 The functional PRNP gene has been studied exten-

sively, notably two coding mutations have been identified in

the inferred amino acid sequence that has been linked to

reduced CWD susceptibility. Examination of allele frequen-

cies found few CWD-infected individuals with a substitu-

tion of histidine (H) for glutamine (Q) at codon 95

(aaQ95H) or a substitution of serine (S) for guanine (G) at

codon 96 (aaG96S).72,73 The effects of these mutations

were examined experimentally by orally infecting captive

white-tailed deer with known genotypes finding that these

mutations delay onset of CWD. Deer genotypes in this

study included wild type (aa95QQ/aa96GG, N=6), hetero-

zygous at aa95 only (aa95QH/aa96GG, N=1), aa96 only

(aa95QQ/aa96GS N=4) or heterozygous for both positions

(aa95QH/aa96GS, N=1).74 All deer presented with clinical

signs of CWD (with the exception of two deer euthanized

due to intercurrent disease); wild type genotypes having an

average incubation period of 693 (± 27) days, those with

only the aa96 mutations lasting 956 (± 107) days, and those

with only the aa95 or both aa95 and 96 mutation genotypes

succumbing to the disease after 1508 and 1596 days

(respectively).74

Examination of complete PRNP nucleotide sequence

corroborates these previous findings of CWD susceptibil-

ity and further the understanding of the role of this gene in

disease management. Kelly et al75 found ten polymorphic

sites in the PRNP gene from free roaming deer in Illinois

(N = 196 deer, 76 CWD-positives and 120 CWD-nega-

tive). This study identified both of the nonsynonymous

mutations (aa95 or nt285, and aa96 or nt286) confirming

previous findings and identified three additional synon-

ymous mutations which were determined to be more com-

mon among deer testing negative for CWD. Similarly,

Wilson et al76 examined both white-tailed deer and mule

deer in Canada finding fifteen variable sites among white-

tailed deer and two variable sites in mule deer. Of these

variable sites, only one nonsynonymous mutation (nt286)

and four synonymous mutations were determined to be
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associated with CWD susceptibility in white-tailed deer,76

and one nonsynonymous (nt59) and one synonymous

(nt393) mutation was identified in mule deer, each found

significantly more often in mule deer testing negative for

CWD.76

When the combined effects of synonymous and nonsy-

nonymous mutations were considered from white-tailed

deer in Illinois and Wisconsin twenty-six unique haplotypes

were identified consisting of fourteen polymorphic sites (ten

previously reported75,76 and four novel).77,78 Two haplo-

types designated C and F were found less frequently

among deer testing positive for CWD. Each haplotype con-

tains one of the nonsynonymous mutations reported to

reduce CWD susceptibility as well as one synonymous

mutation. Haplotype C includes the nonsynonymous muta-

tion nt286A (aa96S) and one synonymous at nt555T, and

haplotype F contains the nonsynonymous mutation nt285C

(aa95H) and one synonymous at nt60T. Unlike scrapie, no

study has identified mutations that confer complete genetic

resistance to CWD. Brandt et al77 found that deer with

either the C or F haplotypes were less likely to be infected

with CWD but still detected positive deer possessing these

haplotypes.77,78 No studies have examined the protective

effects of these mutations with regard to infectious dose

of the prion protein.

The absence of complete genetic resistance to CWD

does not preclude the use of genetics as a tool to manage

the disease. Several studies analyzing white-tailed deer

landscape and population genetics in Wisconsin and

Illinois have led to a better understanding of deer movement

patterns and other dynamics that may influence the spread

of CWD. Deer were genotyped using microsatellite loci

finding that population structure was largely influenced by

female philopatry79 and landscape features can promote or

inhibit movement thus influencing disease spread.80–82 The

frequency of protective PRNP haplotypes may contribute to

population level susceptibility and shape the way CWD

spreads across the landscape. In Illinois where populations

have higher frequencies of the protective C or F haplotypes,

the geographic progression of the disease was slowed and

confined to a smaller area.78 Control of CWD may require a

multifactorial approach where genetic profiles can assist in

the management of CWD.

Prevalence And Distribution
The origin of TSEs, and thus CWD, is not clear.

Speculative theories suggest that TSEs might have a spon-

taneous origin, however, these theories are not proven.83,84

Prevalence of CWD varies across North America, reaching

30% for free-ranging populations in endemic areas,53 but

can be, in unusual circumstances, as high as 80–90% in

captive populations.54 Initial endemic zones were limited

to northeastern Colorado and southeastern Wyoming, with

eventual growth to southeastern Wisconsin, extending east

to New York and West Virginia, and southward to New

Mexico.85,86 Since the first report in captive mule deer in

Colorado nearly 50 years ago,1,54 CWD in North America

has spread to 26 US states and three provinces in Canada

(Saskatchewan, Alberta and Quebec; Figure 2).87 The first

cases of CWD outside North America were reported by

the year 2000 in South Korea, after import of subclinical

CWD infected farmed elk from Canada.88,89 Recently,

CWD cases have been found in free-ranging reindeer and

moose in Norway, Finland and Sweden.67,87,90 CWD’s

expanding geographic distribution has been attributed to

both natural movements of free-ranging cervids, as well as

anthropogenic movement of infected farmed elk and deer.

Movement of animal carcasses and other animal bypro-

ducts that are known to be infectious under experimental

conditions—including natural cervid urine lures and antler

velvet—may be involved in facilitating the spread of

CWD.25,91

Since the initial report of CWD in mule deer

(Odocoileus hemionus) in a Colorado research facility in

the late 1960s,1 many captive and free-ranging cervid popu-

lations have been affected, and, by the time of writing this

paper, the known host of CWD has grown to include moose

(Alces alces), North American elk (Cervus canadensis and

Cervus elaphus elaphus, also known as wapiti), white-tailed

deer (Odocoileus Virginianus), red deer (Cervus elaphus),

sika deer (Cervus nipon), reindeer (Rangifer tarandus),

European moose (E. alces alces, also known as Eurasian

Elk), mule deer (Odocoileus hemionus) and subspecies

black-tailed deer (O. hemionus columbianus; Figure 3).92

Although the spread of CWD is well understood, no con-

clusive evidence to demonstrate a link between CWD in

North America and CWD in European cervids has been

established.67 This is mainly due to the lack of understand-

ing of the origins of CWD coupled with no evidence of

CWD in the cervid population in the European Union prior

to 2016,93 when the first case of CWD in Europe was

discovered in a free-ranging Norwegian reindeer.91 Still,

prevalence of CWD in North America, Europe and possibly

other parts of the world is unknown.

Prevalence estimates are susceptible to the number of

deer tested, representing the occurrence of disease in the
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tested population in a geographic region at a particular

time. Based on hunter-harvested animal surveillance pro-

grams (1996–1999), CWD prevalence in an endemic area

in Colorado was estimated at approximately 5% in mule

deer, 2% in white-tailed deer and <1% in elk.52 By 2018,

CWD rates of infection were estimated to occur in about

one-third of Colorado’s elk population and about half of

the state’s deer population.94 In Wisconsin, CWD preva-

lence in white-tailed deer doubled in some areas during a

period of 6 years (2011–2016), with approximately 40–

50% adult males and 20–30% adult females infected.95

Despite reports of increasing rates of CWD in specific

locations in the US, surveillance data from other endemic

areas indicate that CWD prevalence rates have remained

low and changed little over long periods of time.96 This is

the case in Illinois, where surveillance and management

strategies were implemented and sustained since the first

case of CWD was detected in 2002. Although prevalence

rates found in Illinois in 2018 were lower than previous

years, it was recognized that it is too early to suggest that

this trend will continue. Thus, long-term surveillance

and CWD management strategies need to continue to

slowdown the spread of disease and the increase in pre-

valence rates to parts of the state that remain CWD free.96

Prevalence is influenced by biotic factors, such as sex

and age, as well as abiotic factors associated to geographic

location (eg, soil and pH characteristic). Trends in preva-

lence in endemic areas in Wisconsin have increased during

the last 17 years, showing a rise in the prevalence from 8–

10% to over 35% in adult males and from 3–4% to over

15% in adult females at the western monitoring area;

during the same period of time the trends in prevalence

increased from 2% to 13% in male yearlings and from 2%

to 10% in yearling females.97 In Illinois, age and sex have

Figure 2 Reported distribution of Chronic Wasting Disease (CWD) in North America. By 2019, 26 states and 3 Canadian provinces have reported CWD cases in captive

and free-ranging cervid populations.

Notes: Credit to Bryan Richards, USGS National Wildlife Health Center (Public domain).160
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been found to be associated with differences in prevalence.

The mean prevalence rates during 2003–2018 have been

75% higher in males than in females;96 with higher rates in

adult deer (1.93%) than in yearlings (0.89%) and fawns

(0.45%); and higher rates of CWD in males than females,

although, in this study, sex difference was not significant

(P=0.079).98 More recently, the overall CWD prevalence

in adult deer was estimated at 0.84% and was twice as

high in males (1.07%) compared to females (0.54%).96

Horizontal transmission is the most important route of

CWD infection52 and the most important contributing

factor for CWD prevalence and incidence. Miller et al41

demonstrated that naïve animals could contract CWD

when using sites where previous CWD-infected animals

were housed. Prions enter the environment via decaying

carcasses and excretion of bodily fluids that have been

identified as containing high levels of PrPSC. Blood and

saliva are the biological fluids with highest PrPSC levels,

followed by fecal matter and urine, thus carrying high

levels of infectivity. Other peripheral organs that accumu-

late large numbers of PrPSC include adrenal glands, thyr-

oid glands, lungs, liver, kidneys, bladder, pancreas,

gastrointestinal tract, retina, antler velvet, heart, tongue

and skeletal muscle.52 Prions from all these tissues can

enter the environment and remain infectious for long per-

iods of time.41,99,100 Soils and other fomites acting as

environmental reservoirs (eg, mineral licks) contribute to

horizontal transmission.101

Because of cervid grazing behaviors, infection can be

acquired via soil ingestion or soil inhalation, and by con-

tact with bioavailable PrPSC from biological material in

soil. It is not surprising that, because of this, much

research in recent years has focused on soil properties

(eg, organic matter, clay content, soil metals and soil pH)

and its contribution to PrPSC persistence in the

environment.98,100,102–109 For instance, attachment of the

prion proteins to minerals in clay may limit migration of

the infectious CWD protein through the soil column,

maintaining infectious PrPSC at the soil surface, contribut-

ing to CWD dissemination.103 While some of these soil

characteristics may influence PrPSC stability, persistence in

the environment and infectivity,100,104–106 others—such as

natural oxidants and soil humic acids—may interfere with

conversion of PrPC to the pathogenic PrPSC,107 or degrade

PrPSC and reduce CWD infectivity.108

Modeling studies based on CWD cases from surveil-

lance programs have evaluated landscape features related

to deer habitat and soil characteristics that could be

Figure 3 Chronological identification of CWD in cervid species.

Notes: Data from Haley and Hoover (2015),54 Benestad and Telling (2018),52 Ricci et al (2017),67 Chronic Wasting disease Alliance.92
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environmental determinants for CWD risk, influencing

prion availability and persistence.98,109–111 Evaluation of

spatio-temporal patterns of CWD reported cases in white-

tailed deer at the border of Wisconsin and Illinois—one of

the hot spot areas for CWD in the US—found that land-

scape features such as larger and more compact forest, as

well as lower elevation areas closer to rivers, were asso-

ciated with higher risk of CWD; yet, other study found

areas with small forest patches increased the risk of CWD

occurrence.110 A geographical model focused on soil char-

acteristics and its contribution to CWD in free-ranging

deer found percent of clay and soil pH as the two most

important predictors of the persistent presence of CWD in

endemic areas.109 This is in agreement with findings by

O’Hara-Ruiz et al98 that indicated that less clay and more

sand enhance CWD persistence and transmission. Still,

while some studies agree that more clay is associated

with less CWD, others have found the opposite106 or no

association to CWD incidence.112

Beside soil, other common environmental materials

including wood, rocks, plastic, glass, cement, stainless

steel, aluminum and grass plants have been proven to

“bind, retain and release” prions.113,114 In the case of

plants, these can act as carriers of infection by binding

infectious prions from contaminated secretions, as well as

by uptake of prions from contaminated soils, and mobiliz-

ing them to aerial parts of the plants including steam and

leaves.113 After five decades of CWD research, many

factors that influence CWD prevalence have been identi-

fied and several lines of evidence have expanded our

understanding of how CWD spreads in nature.

Nonetheless, many questions remain and significant chal-

lenges need to be addressed in order to effectively control

CWD prevalence and reduce incidence at different geo-

graphic locations.

Impact
Chronic wasting disease has an ecologic, economic and

social effect, with deep impact on the viability of cervid

populations. An experimental study found a 60% decline in

full-term viable offspring born to CWD-positive muntjac

dams.48 Modeling studies have shown an annual population

decline of 10.4% in white-tailed deer and 21% in sympatric

mule deer populations in southeasternWyoming, corroborat-

ing the population-limiting impact of CWD.115,116 Survival

estimates indicate that CWD-infected mule deer were 4.5

more likely to die annually compared to CWD-negative

deer116 and were more susceptible to predation than

uninfected deer.117 The impact on elk populations in endemic

areas in Colorado and South Dakota has also shown declines

in survival118 and decrease in population growth rates.119

Conversely, the impact of CWD in low-density deer popula-

tions differs from places with high-density populations.Mule

deer living in arid San Andres Mountains—part of the

Chihuahuan Desert-range in southern New Mexico—

showed weak population effects based on CWD prevalence

and mortality data.120 Models reveal mixed results in long-

term survival of cervid populations based on observed epi-

demics in endemic areas of Wisconsin, Colorado and

Wyoming. Outcomes ranged from small host declines to

moderate epidemics, and in some cases, to complete host

extinction.121 Captive cervid facilities have been impacted by

CWD, with over 175 herd facilities affected across the US

and reported infection rates as high as 80% at some of these

facilities.122 The extent of disease impact in other parts of the

world is less understood. Because of the limited surveillance

across Europe—especially in remote areas—it is not possible

to exclude the possibility that CWD has been affecting cer-

vids across Europe for decades.91,93

Another consideration of the potential impact of CWD

is the risk to human health. Even though the only demon-

strated zoonotic TSE is variant Creutzfeldt–Jakob disease

(vCJD), which resulted from non-experimental transmis-

sion of classic bovine spongiform encephalopathy (BSE)

from cattle to humans,123 no absolute molecular barrier to

conversion of the human prion protein by the CWD prion

protein has been found.124 Experimental studies and epi-

demiological investigations, coupled with careful surveil-

lance, established a link between vCJD and BSE.

Nevertheless, ongoing surveillance and epidemiological

studies of humans living in CWD-endemic areas in

North America and Canada have not shown any increases

in human TSE cases,123,125 and have not been able to find

associations between CWD and prion diseases in humans.

Laboratory and epidemiological data support the role of a

species barrier protecting humans from CWD.126–131

Experimental studies using humanized transgenic

mice did not result in CWD transmission,127 and

Raymond et al126 demonstrated a barrier at the molecular

level that appears to limit the susceptibility of humans,

cattle and sheep to CWD. Yet, susceptibility to CWD has

been shown in cattle, cats, sheep and goats under experi-

mental conditions following intracerebral inoculation.132

Oral inoculations, on the other hand, have been ineffi-

cient at inducing disease, suggesting a high species bar-

rier under oral exposure. Only recently oral inoculation
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was successful at inducing prion disease in squirrel mon-

keys and swine.130,131,133 In swine, the species barrier

was relatively high, as only low amount of prions was

found in brain and lymphoid tissue.133 Interestingly,

CWD has not been successfully transmitted to

Cynomolgus macaques, which are genetically closer to

humans than squirrel monkeys.129,131,134

More recently, the zoonotic potential of scrapie prions

was demonstrated after serial transmission of different

Scrapie isolates to humanized transgenic mice,135 coupled

with the reported transmission of Scrapie prions to pri-

mates after long incubation periods of 10 years.136 Taking

into account the long incubation periods—of a minimum

of 5 years—that was required before clinical disease was

observed after oral inoculation of Cynomolgus macaques

with BSE, surveillance and research should continue and

allow for long incubation periods to elucidate long-term

effect of CWD in nonhuman primates and potential con-

sequences to humans.

Beyond the direct impact of CWD on free-ranging

cervid populations and potential effect on human health,

there is an economic impact associated with management

of CWD, and the effect of CWD on hunters and farmed

cervid industry. For example, after the discovery and

spread of CWD in North America, an estimated $32.3

million was spent by Wisconsin for CWD surveillance

and management between 2001 and 2006.137 The potential

economic losses per farm have been estimated at

$290,000,138 and reached $53–$79 million in 2002 and

$45–$72 million in 2003 for hunters in Wisconsin.139

Total depopulation was required at some captive cervid

facilities, with costly government expenses associated with

compensation.95 According to the 2016 National Survey of

Fishing, Hunting, and Wildlife-Associated Recreation,140

an estimated 103 million Americans participated in fish-

ing, hunting or other wildlife-associated recreational activ-

ity, spending $156.9 billion on equipment, travel, licenses

and fees. Approximately 11.5 million were hunters, mean-

ing that 4% of the Americans 16 years of age or older

hunted in 2016. Revenues from hunting, fishing and wild-

life-associated activities help to support wildlife and habi-

tat conservation efforts. However, concerns about the

potential and long-term impact of CWD to the cervid

captive and wildlife populations, compounded with

unknown risks of CWD transmission to humans, and evi-

dence of risk of transmission to swine, could impact these

revenues. CWD may reduce hunting and related activities

in endemic areas, affecting the cost of management disease

in areas where CWD becomes established. These, in turn,

could affect jobs and communities that depend on the

support of hunting and related activities across the nation.

Management Of CWD
Management guidelines for infectious diseases like CWD

are difficult to develop and implement, as they need to

account for factors that influence prevalence, incidence,

transmission and geographic spread. Some of these factors

include population dynamics, genetics, animal movement

and dispersal, type of population (eg, captive or free-ran-

ging cervids) and landscape characteristics (eg, forest areas

or arid environments). Furthermore, the goals of proposed

management and control strategies of CWD should be

defined according to disease status in different regions;

only then, strategies for control and/or prevention might

be implemented. While depopulation of an infected herd

followed by restocking after a period of 2 years is used for

farmed deer,141 management intervention strategies for free-

ranging populations are different; they consist of population

reduction—to minimize disease transmission—and selec-

tive culling of deer in CWD endemic areas—to control

CWD prevalence.142 These efforts require support from

hunters and landowners so that the management can be

applied. Eradication of CWD might not be realistic, but

control is; once CWD has become established, management

strategies should focus on limiting the growth of the num-

ber of infected individuals and therefore limit the increase

in prevalence.

Farmed cervid CWD management programs in the US

have been developed with the goal of creating a national

approach to control CWD incidence and prevent spread

between states. This is a collaborative effort among state

regulatory agencies (eg, wildlife and animal health agencies),

Animal and Plant Health Inspection Services (APHIS) and

owners of farmed cervid facilities. The USDA-APHIS CWD

management program includes a herd certification program

that facilitates surveillance and interstate movement of non-

infected animals. The program provides guidance on fence

design, sampling strategies and response protocols if CWD is

detected in a facility (eg, quarantine and carcass disposal,

decontamination procedures and management of a herd dur-

ing the epidemiological investigation).143 Depending on the

epidemiological investigation, a herd could be classified as

(a) CWD-positive (if an animal tested positive for CWD), (b)

CWD-exposed (“if a CWD-positive animal resided in

another herd (or multiple herds) within the previous 5

years”) or (c) epidemiologically linked herds (all herds with
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animals that were in contact with other animals that pre-

viously resided with a CWD-positive animal). If a herd is

classified as CWD-positive or CWD-exposed, a quarantine

of 5 years should be issued—based on the date the herd was

last exposed to a CWD-positive animal—unless the herd is

depopulated.143

The four CWD management strategies used in North

American free-ranging wild deer include 1) general, non-

selective population harvest (spatially targeted); 2) selective

or targeted removal of clinical suspects (infected deer); 3)

seasonal harvest (eg, summer) and 4) vaccination.144

Predictive models that evaluated these management strate-

gies found that increased general hunting pressure with or

without targeted sex group, the role of large predators, and

seasonal hunting had some positive effect on CWD under

specific conditions.145–147 Yet, analytical experimental stu-

dies that included vaccination (eg, intramuscular vaccination

with two different prion peptide sequences) and oral admin-

istration of therapeutic compounds for prevention of CWD

infection showed ineffective results.148,149 A study evaluat-

ing the use of mucosal immunization with an attenuated

Salmonella vaccine expressing PrP found that the efficacy

of the control measure was not clear.150 Two analytical

observational studies based on planned culling as the inter-

vention strategy found the control measure effective.144

Despite differences between intervention and control strate-

gies, studies that evaluated differences between government

culling and hunting, found that moderate but sustained inten-

sity with continued and frequent culling is needed to reduce

CWD prevalence.142 This effort minimizes the impact on

recreational deer harvest.151 Furthermore, other studies sug-

gested that management strategies focused on reducing

population prevalence instead of deer abundance are more

effective strategies in reducing CWD transmission.112

The objective of management and surveillance is to

protect the health of captive and free-ranging herds from

the spread of CWD, mitigate the negative consequences of

reduced recreational hunting on the economy, decrease the

geographic spread of CWD and reduce the potential of

CWD prions to be transmitted to the environment, humans

and any other species.98 Surveillance and monitoring of

CWD provide essential data that help with the develop-

ment of focused management strategies in endemic areas

and guide direct management efforts. Moreover, they help

with early detection of CWD, so timely dissemination of

information and necessary action can be taken.67 For

example, early detection of CWD in two captive herds

and two wild deer in New York in 2005 prompted

immediate actions that appear to have successfully miti-

gated CWD.152 However, for those regions where self-

sustaining CWD epizootics continue to be a challenge, as

in the state of Illinois, surveillance efforts have shown that

continued intensive management, focused on specific areas

infected with CWD, is a powerful management strategy

that helps to keep disease prevalence low.98 There are two

types of surveillance for CWD monitoring in free-ranging

cervid populations: passive surveillance (which include the

testing of road kills, dead, sick or suspect deer for CWD)

and active surveillance (which include testing of hunter-

harvested deer for CWD in target areas). Although knowl-

edge gaps in the epidemiology of CWD still exist, only

continued surveillance will inform CWD management and

control strategies.

Science-based policies will help to develop effective

management strategies that are relevant to the population

monitored. The development of long-term sustainable man-

agement strategies is necessary in order to keep low pre-

valence and to avoid dissemination of CWD. Left

unmanaged infection rates will affect the ability of cervidae

herds to sustain themselves.94 CWD regulations to prevent

further spread include restriction in translocation of captive

cervids and movement of hunter-killed big game carcasses,

high-risk tissues or bodily fluids that tend to concentrate

high levels of PrPSC. Prion deposition in mineral licks was

demonstrated in an enzootic area in Wisconsin, corroborat-

ing the participation of mineral licks as risk factors for

CWD transmission, environmental reservoirs for CWD

prions and as potential sources for cross-species contamina-

tion as they attract livestock and non-cervid wildlife

species.101 The bans on baiting and feeding implemented

in multiple states in North America and municipalities in

Norway are crucial to reduce the congregation of animals

and to reduce direct contact rates of susceptible with

infected animals that in normal circumstances do not con-

gregate and feed on the precise same small area.153 This

regulatory ban helps to prevent direct transmission of infec-

tious diseases like tuberculosis, brucellosis and CWD.

Conclusions
Chronic wasting disease (CWD) is a highly contagious

prion disease that affects captive and free-ranging cervids.

The infectious agent is the misfolded prion protein

(PRPSC), which is primarily transmitted horizontally via

direct contact between animals or indirectly through con-

tact with infective secretions and contaminated fomites.

CWD is epizootic in the US and continues to expand
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through North America; outbreaks in Europe are on the

rise. Our current understanding of the long-term effect of

CWD on free-ranging populations is still limited.

However, we know the population-limiting impact of

CWD, even at low prevalence rates it affects the possibi-

lity of a herd to thrive. CWD is a 100% fatal slowly

progressive neurodegenerative disease, with long incuba-

tion periods wherein sub-clinical-infected animals contri-

bute to the shedding of the pathogenic PrPSC. Given the

longevity of infectious proteins in the environment and

that the disease is in a free-roaming population, managers

are unlikely to completely eliminate the disease, but they

can control it. Some management approaches have helped

sustain low CWD prevalence and slow the spread of the

disease. Genetic tools identify animal movement patterns

and population level susceptibility (ie, herd immunity),

helping to contain or reduced areas affected by CWD.

Yet, gaps in knowledge still exist. An improved under-

standing of population dynamics, deer behavior that influ-

ence CWD transmission among free-ranging cervids and

prions in the environment is needed to facilitate CWD

management. The effect of protective haplotypes that

may be acting as a genetic barrier preventing the spread

of CWD, potential therapeutic strategies that will help to

protect and manage captive and free-ranging populations,

as well as new tools for effective antemortem detection,

environmental clean-up and prion protein degradation are

all integral components of the future management of

CWD. Regardless of the strategy, management of an infec-

tious disease such as CWD is a joint responsibility that

involves the government, state and local agencies, farmed

cervid producers, hunters and the general public. The key

to the success of CWD management in free-ranging deer

involves public acceptance and a continual support and

commitment to intervention. Only through ongoing scien-

tific research and management based on scientific evidence

can CWD be controlled. In the future, if a treatment or

cure is identified, our chances to take advantage of those

tools will be much better if CWD has been contained and

prevalence rates are low.
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