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a b s t r a c t

There is growing awareness among urban planning, public health, and transportation professionals that
design decisions and investments that promote walking can be beneficial for human and ecological
health. Planners need practical tools to consider the impact of development on pedestrian safety, a key
requirement for the promotion of walking. Simple bivariate models have been used to predict changes in
vehicle-pedestrian injury collisions based on changes in traffic volume. We describe the development of a
multivariate, area-level regression model of vehicle-pedestrian injury collisions based on environmental
and population data in 176 San Francisco, California census tracts. Predictor variables examined included
street, land use, and population characteristics, including commute behaviors. The final model explained
approximately 72% of the systematic variation in census-tract vehicle-pedestrian injury collisions and
included measures of traffic volume, arterial streets without transit, land area, proportion of land area
zoned for neighborhood commercial and residential-neighborhood commercial uses, employee and resi-
dent populations, proportion of people living in poverty and proportion aged 65 and older. We have begun
to apply this model to predict area-level change in vehicle-pedestrian injury collisions associated with
land use development and transportation planning decisions.

Published by Elsevier Ltd.

1. Introduction

1.1. Pedestrian safety and planning

In the 20th century, pedestrian needs were rare priorities in
urban and transportation planning (Frumkin et al., 2004). Yet,
environments that support walking can benefit human health by
reducing motor vehicle collisions, motor vehicle-related noise and
air pollution, and increasing physical activity and social cohesion
(Cavill, 2001; Ewing, 2006; Leyden, 2003; Lavizzo-Mourney and
McGinnis, 2003). To achieve walkable communities, planning pro-
fessionals need practical tools to assess and mitigate the impact
of development on pedestrian safety, including vehicle-pedestrian
collisions.

∗ Corresponding author. Tel.: +1 415 252 3972; fax: +1 415 252 3964.
E-mail addresses: Megan.Wier@sfdph.org (M. Wier), June.Weintraub@sfdph.org

(J. Weintraub), elizahumphreys@gmail.com (E.H. Humphreys), seto@berkeley.edu
(E. Seto),
Rajiv.Bhatia@sfdph.org (R. Bhatia).

1 Present address: Marin Community Clinic, 250 Bon Air Road, Greenbrae, CA
94904, United States.

Traffic collisions are a major cause of mortality in the United
States (Mokdad et al., 2004), and the leading cause of death for
persons aged 4–34 (Subramanian, 2006). Nationwide, pedestrians
account for 11% of motor vehicle collision fatalities, with approx-
imately 4700 pedestrian deaths in 2006 (NHTSA, 2006a). 15%
of those people killed while walking died in California (NHTSA,
2006b).

Among California cities, San Francisco has historically had the
highest per capita vehicle-pedestrian injury collision rate (STPP
and California Walks, 2002). In stark contrast with the national
figure of 11%, pedestrians account for half of San Francisco traf-
fic deaths, with 13 fatalities and 726 non-fatal vehicle-pedestrian
collisions in 2006. Pedestrian injuries and fatalities in San Francisco
have declined over the last decade, attributed to intersection and
mid-block pedestrian safety countermeasures, traffic calming, law
enforcement, and improved planning efforts. Still, San Francisco’s
injury rate remains approximately 100/year/100,000 population
(CCSF MTA, 2007; U.S. Census Bureau, 2000) or over five times the
Healthy People 2010 national target of no greater than 19 pedestrian
injuries/year/100,000 people; San Francisco’s fatal injury rate of
2/year/100,000 is twice the national target (US DHHS, 2000).

Motor vehicles and pedestrians are two necessary component
causes of vehicle-pedestrian injury collisions. San Francisco is a

0001-4575/$ – see front matter. Published by Elsevier Ltd.
doi:10.1016/j.aap.2008.10.001



Author's personal copy

138 M. Wier et al. / Accident Analysis and Prevention 41 (2009) 137–145

relatively dense, urban city, with approximately 776,000 residents
and over 250,000 additional non-resident employees. By 2025, res-
idential and job growth are expected to increase trips to, from,
and within San Francisco by 12% (SFCTA, 2004). Of the projected
5 million trips in 2025, 3.3 million will be within San Francisco
and over 50% of those are estimated to be auto trips. Both the rel-
atively high frequency of pedestrian injuries and fatalities and the
projected growth in San Francisco’s traffic and population under-
score the need to prioritize pedestrian safety needs in land use and
transportation planning processes.

Currently, limited planning tools are available to evaluate the
impacts of land use planning on pedestrian safety conditions.
The Pedestrian and Bicycle Crash Analysis Tool software identi-
fies pre-crash actions that lead to collisions, and links them to
potential mitigation strategies (PBCAT, 2007). Crossroads software
(Crossroads, 2007) and zonal analysis (USDOT, 1998) identify colli-
sion patterns and areas with high densities of pedestrian injuries.

Tools for prospectively forecasting the impacts of transportation
and land use development on future vehicle-pedestrian colli-
sions would complement the above methods for assessing existing
collision patterns. To be useful in a planning context, a vehicle-
pedestrian injury collision forecasting model needs to be based
on available or routinely produced data, provide meaningful, easily
interpreted, robust estimates, and be applicable in diverse areas to
routine land use and transportation planning decisions. We are not
aware of any vehicle-pedestrian injury collision forecasting tools in
general use by planners for environmental or health impact assess-
ments.

Empirically, increases in road facility vehicle volume increase
the probability of vehicle-pedestrian conflicts on that facility (Lee
and Abdel-Aty, 2005). A simple way to forecast change in vehicle-
pedestrian collisions associated with change in vehicle volume is
by applying a road safety function—which describes the relationship
between traffic volume and collisions. The following power func-
tion (1.1) is an empirically supported parametric form of a road
safety function, where AADT = Average Annual Daily Traffic:

� (%), vehicle-pedestrian collisions

=
[(

Future AADT
Baseline AADT

)ˇ

− 1

]
× 100 (1.1)

Typically ˇ < 1, and empirical evidence suggests that 0.5 is a
reasonable parameter (Lee and Abdel-Aty, 2005). At ˇ = 0.5, vehicle-
pedestrian collisions are forecasted to increase proportional to the
square root of AADT, with a 50% increase in AADT predicting a 22%
increase in collisions. Fig. 1 graphically illustrates the relationship

Fig. 1. Vehicle-pedestrian injury collision increases associated with traffic volume
increases: power function and San Francisco final model predictions.

between change in vehicle volume and change in the number of
collisions as ˇ varies. Applying this power function (1.1) to esti-
mate collision increases associated with traffic volume changes due
to area-level development is more challenging and requires sim-
plifying assumptions, including: (1) development does not affect
pedestrian flow and behavior; (2) development does not imple-
ment pedestrian safety countermeasures; and (3) AADT changes at
intersections or street segments selected for evaluation are rea-
sonable surrogates for changes at adjacent area roadways. (We
included an example application in the Appendix A.)

As vehicle volume is not the only variable mediating the impacts
of development on vehicle-pedestrian injury collisions, a multivari-
ate area-level model might more robustly predict related change in
collisions. In this paper, we describe our development of a context-
specific regression model for forecasting vehicle-pedestrian injury
collisions that includes local traffic volume and environmental
and area-level population determinants associated with vehicle-
pedestrian injury collisions.

1.2. Area-level predictors of vehicle-pedestrian collisions

Fig. 2 describes the conceptual framework that informed our
model development. Specifically, we sought to understand how
an area’s built environmental context – street and land use char-
acteristics – as well as compositional factors, including resident
and employee population size, population characteristics and travel
behaviors, predict the area-level distribution of vehicle-pedestrian
injury collisions. Vehicle-pedestrian injury collisions are also asso-
ciated with a number of individual-level factors including age,
alcohol consumption, and other driver or pedestrian behaviors
(Laflamme and Diderichsen, 2000; Ryb et al., 2007; Wazana et

Fig. 2. Conceptual framework: an area-level model of vehicle-pedestrian injury collisions.



Author's personal copy

M. Wier et al. / Accident Analysis and Prevention 41 (2009) 137–145 139

al., 1997). In the typical study of individual-level determinants,
the environmental context of the injury is viewed as a “given”
(Christoffel and Gallagher, 1999); however, individual behaviors
occur in and are influenced by the environment, which is the focus
of our research.

Previous research on environmental correlates of vehicle-
pedestrian collisions shows that traffic volume is a significant
predictor (Brugge et al., 2002; LaScala et al., 2000; Lee and Abdel-
Aty, 2005; Loukaitou-Sideris et al., 2007; Roberts et al., 1995),
while injury severity is largely determined by vehicle speed (Ewing,
2006; NHTSA, 1999). Other roadway characteristics associated with
pedestrian injuries include street type (e.g., residential, freeway,
arterial) and intersection and street design features (e.g., traffic
and pedestrians signals, signage, lighting) (Ewing, 2006; Retting
et al., 2003). Similarly, the land use type in an area has been asso-
ciated with vehicle-pedestrian collisions (overall and fatal)—with
increases predicted by increasing proportions of land used for com-
mercial, mixed use, park, retail, or community uses (Geyer et al.,
2005; Kim et al., 2006; Loukaitou-Sideris et al., 2007; Wedagama
et al., 2006).

Pedestrian volumes, at the intersection-level as well as larger
geographic regions, are also associated with increased pedestrian
injury risk, though individual risk may be attenuated as pedes-
trian volumes increase (Geyer et al., 2005; Jacobsen, 2003). Actual
pedestrian count data is not routinely collected in the United States;
however, U.S. Census data on population or commute travel mode
data can serve as a surrogate for pedestrian volume (Jacobsen,
2003).

Aside from pedestrian volumes, specific population characteris-
tics can affect vehicle-pedestrian collision risk. Vehicle-pedestrian
collisions are a leading cause of injury and death for youth
(Walton-Haynes, 2002). Nationally, youth aged 10–20 have the
highest population rates of pedestrian (non-fatal) injury at
35 injuries/100,000, well above the overall population rate of
20/100,000 (NHTSA, 2006b). Seniors aged 65 and over actually have
non-fatal injury rates slightly lower than the overall population
rate (some have speculated due to less pedestrian activity); how-
ever, seniors are more likely to die when hit by a vehicle based on
national and local data (NHTSA, 2006b; Sciortino and Chiapello,
2005a). The elderly and children take longer to cross a street,
increasing their exposure for injury (Demetriades et al., 2004), and
children also have less developed cognitive, perceptual, motor and
traffic safety skills (Johnson et al., 2004). Lower income children
have a higher rate of pedestrian injury than higher income children,
though the mechanisms contributing to this disparity – includ-
ing the physical and social environment – are not well understood
(Laflamme and Diderichsen, 2000; Johnson et al., 2004; LaScala et
al., 2004).

Findings from many of the above studies may be specific to local
contexts, and the resulting findings and risk estimates therefore
may not be generalizable. In addition, some of the above studies
did not adjust for confounding by important covariates, while oth-
ers standardized outcome variables by factors we would like to
understand as predictors—such as street length or land area.

1.3. Macro-level collision models

Vehicle-pedestrian collisions tend to be dispersed throughout
urban areas, and these dispersion patterns are missed by intersec-
tion or other micro-level analyses that focus on “black spots” with
pre-existing high crash rates (Campbell et al., 2004; Morency and
Cloutier, 2006). For example, from 2001 to 2005, eliminating all
vehicle-pedestrian injury collisions at the five San Francisco inter-
sections with 10 or more collisions during that period would leave
over 98% of the city’s vehicle-pedestrian injury collisions unad-

dressed (CCSF MTA, 2006). However, based on our data review,
almost 10% of San Francisco’s vehicle-pedestrian injury collisions
were concentrated in two of 176 census tracts. A macro-level
approach focused on census tracts could inform area-wide commu-
nity transportation safety planning, and complement micro-level
traffic safety mitigation measures such as intersection signalization
(Lovegrove and Sayed, 2006).

Transportation researchers have modeled motor vehicle col-
lisions at an area-level using multivariate regression methods,
aggregate variables and linked datasets (Hadayeghi et al., 2003;
Ladron de Guevara et al., 2004; Lovegrove and Sayed, 2006). Pos-
itive associations between collisions and traffic volume or vehicle
miles travelled, population density, road network, and area-level
socio-demographic characteristics are consistently significant in
these macro-level models, which include pedestrian collisions with
all motor vehicle collisions. Given potentially different determi-
nants and risk estimates, separate macro-level vehicle-pedestrian
collision models are warranted. For example, Loukaitou-Sideris et
al. (2007) analyzed the spatial distribution of vehicle-pedestrian
collisions in Los Angeles, and found pedestrian exposure, traffic,
socioeconomic and land use variables were predictive of census-
tract collision density.

To evaluate and model census-level predictors of vehicle-
pedestrian injury collisions in San Francisco, we used cross-
sectional, aggregated data, to (1) describe the distribution of
vehicle-pedestrian injury collisions and select environmental and
population characteristics in San Francisco census tracts; and
(2) estimate the nature and strength of the independent effect
of census-tract traffic volume on census-tract vehicle-pedestrian
injury collisions, adjusting for covariates. We then discuss the
strengths and limitations of this approach and its potential for
practical application to predict change in vehicle-pedestrian injury
collisions associated with land use development and transportation
planning decisions.

2. Methods

This area-level model is based on cross-sectional data for San
Francisco, California County, aggregated at the level of the census
tract (outlined in Fig. 3). We selected our analytic variables based on
the previous literature and our interest in environmental predictors
of vehicle-pedestrian injury collisions as detailed in Fig. 2.

2.1. Outcome variable

We used data on vehicle-pedestrian injury collisions in San Fran-
cisco, 2001–2005, from the Statewide Integrated Traffic Records
System (SWITRS) which contains data on reported vehicle colli-
sions on public roadways (CHP, 2008). SWITRS vehicle-pedestrian
injury collision data were imported into ArcGIS (version 9.2; ESRI
Inc., Redlands, CA, USA) and geocoded to the intersection of the
reported primary and secondary streets (exact street address is
not collected). We used a spatial join to assign vehicle-pedestrian
injury collisions to one of the 176 census tracts in San Francisco
(Geolytics Inc., 2004). We excluded non-injury collisions which are
reported as “Property Damage Only”. We included collisions result-
ing in pedestrian injuries and/or fatalities, hereafter referred to as
“vehicle-pedestrian injury collisions.”

2.2. Independent variables

We obtained street segment traffic counts and street length and
type data from researchers at the San Francisco Department of Pub-
lic Health and the University of California - Berkeley. This dataset
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Fig. 3. Vehicle-pedestrian injury collisions: San Francisco, California census tracts (2001–2005). Source: California Highway Patrol, Statewide Integrated Traffic Records
System (SWITRS).

Table 1
Descriptive statistics for San Francisco, California census tracts (n = 176).

Variable Mean Median Minimum Maximum Standard deviation

Dependent variable
Vehicle-pedestrian injury collisions,a 2001–2005 (n) 23 14 0 191 28

Street characteristics
Traffic volume (n, natural log, aggregated average daily traffic counts)b 925,544 703,145 153,355 4,485,193 686,193
Intersections (n) 103 86 21 760 79
Residential streets (%, street length) 61.5 64.1 23.0 100.0 14.7
Arterial streets, without public transit (%, street length) 17.0 16.8 0.0 48.3 11.6
Arterial streets, with public transit (%, street length) 19.4 16.3 0.0 67.2 13.2
Freeways and highwaysb (%, street length) 2.1 0.0 0.0 23.3 5.3

Land use characteristics
Commercial (%, land area) 3.4 0.0 0.0 62.0 10.4
Industrial (%, land area) 3.6 0.0 0.0 74.9 11.3
Neighborhood commercial (%, land area) 5.5 2.9 0.0 32.3 7.0
Residential (%, land area) 33.3 38.5 0.0 67.9 22.6
Higher density residential (%, land area) 8.9 3.4 0.0 65.0 12.9
Residential-neighborhood commercial (%, land area) 2.5 0.0 0.0 56.9 8.3
Land area (square miles) 0.27 0.19 0.02 2.40 0.29

Population characteristics
Employee population (n) 3,337 1,063 70 94,770 9,343
Resident population (n) 4,413 4,383 137 9,221 1,916
Age 65 and older (%, resident population) 13.5 13.1 0.6 40.0 6.9
Age 17 and under (%, resident population) 14.2 13.9 1.5 43.9 7.5
Living below the poverty level last year (%, resident population) 11.6 9.1 0.0 51.8 7.7
Unemployedc (%, resident population) 2.7 2.3 0.0 13.3 1.8

Commute behaviors
Workersd commuting to work by walking (%, resident population) 7.6 5.6 0.0 41.8 7.7
Workersd commuting to work by public transit (%, resident population) 16.2 16.1 3.0 34.0 6.1

a Includes collisions resulting in pedestrian injuries and/or fatalities.
b Excludes grade-separated street segments inaccessible to pedestrians.
c ≥16 years old, in the civilian labor force, unemployed.
d Workers 16 years and older.
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was created from existing street segment daily traffic counts col-
lected principally from 1997 to 2002 and maintained by the San
Francisco Municipal Transportation Agency and the County Trans-
portation Authority. Researchers consolidated the traffic counts,
adjusted them by street direction (one-way, two way, and divided
streets), and applied them to their respective street centerline net-
work number for geocoding purposes. Traffic counts were imputed
for street segments with unknown counts based on the average
traffic count for the street segment type (highway/freeway, arte-
rial with public transit (e.g., streetcars, light rail vehicles, buses,
cable cars), arterial without public transit, residential) within
each planning neighborhood as detailed in Seto et al. (2007). We
excluded grade-separated street segment counts (i.e., streets with-
out pedestrian access) and then aggregated the remaining street
segment traffic counts by census tract to obtain the study traffic
estimates—hereafter referred to as traffic volume. We obtained 2005
zoning district area data from the San Francisco Planning Depart-
ment, and aggregated zoning use districts into census-tract level
land use characteristic categories (Table 1).

We obtained the following census-tract level aggregate vari-
ables from the U.S. Census Bureau (2000), Summary Files 1 and
3: land area (square miles); population age 65 and older and under
age 18; unemployed population; workers traveling to work by walk-
ing or by public transit; population living below the poverty level
last year. We used the census-tract level variables as numerators
and the total population from the corresponding Summary File as
the denominator to create census-tract level proportions (Table 1).
The number of workers-at-work in the census tract was obtained
from the Census Transportation Planning Package (2000). We deter-
mined the number of intersections in each census tract using a
spatial join with intersection, node, and street CNN data provided
by the City and County of San Francisco (SFDTIS, 2006).

2.3. Data analysis

We first assessed the distribution of vehicle-pedestrian injury
collisions, land use, street characteristics, pedestrian exposure
proxies, and demographic characteristics in San Francisco census
tracts. We then used ordinary least squares regression (OLS) to
model the natural log of the number of vehicle-pedestrian injury
collisions over a 5-year period. We added one collision to the three
census tracts with zero collisions reported so they would not be
dropped from the analysis. The model form used for our analyses
is

ln(PIC) = ˇ0 +
∑

ˇiXi (1.2)

where ln(PIC) is the predicted natural log of vehicle-pedestrian
injury collisions per census tract; ˇ0, the intercept; ˇi, the model
coefficient for 1-unit change in predictor variable i; and, Xi, the
census-tract level data for predictor variable i. All variables are con-
tinuous and at the census-tract level. To better approximate the
normality assumptions of the linear model, we applied a natural
log transformation to both the traffic volume and employee vari-
ables, as in previous research (Hadayeghi et al., 2003; Jacobsen,
2003; Lovegrove and Sayed, 2006).

We used the conceptual framework for our model building
approach (Fig. 2). We started with a base model including the street
and land use characteristics in Table 1, then added population char-
acteristics followed by commute behavior variables. In each step,
variables were dropped from the model based on coefficient p-
value. We assessed model fit based on the values, distribution, and
tests of spatial autocorrelation (Moran’s I) of the residuals. One cen-
sus tract was an evident outlier based on our assessment of model
fit based on residual plots. This census tract was one of three cen-

sus tracts to which we had added one collision because it had zero
collisions reported. We reviewed the census tract’s predictor vari-
able values and found no extreme or erroneous values. We then
visually assessed the tract’s geographic characteristics using ArcGIS
and GoogleTM maps, which provided evidence that it is likely a
true outlier. This tract’s street network has numerous dead ends,
lacks connectivity, and has large portions of area densely forested
and without streets, in contrast with the grid street network and
sparser street trees in most of the city. Additionally, the large med-
ical center that employs most of the tract’s >5000 employees is
on the tract border, its campus split by the boundary and the area
in the census-tract largely surrounded by forested land. Based on
these anomalous environmental conditions, we dropped the tract
from our analysis, which improved model fit. Our final model is
therefore based on 175 census tracts. All analyses were conducted
using STATA software (version 9; StataCorp, College Station, TX,
USA).

3. Results

There were 4039 recorded vehicle-pedestrian injury collisions
in San Francisco’s 176 census tracts from 2001 to 2005, with a
median 14 and mean 23, ranging from 0 to 191 vehicle-pedestrian
injury collisions in a tract (Table 1). As illustrated in Fig. 3, vehicle-
pedestrian injury collisions were dispersed throughout the city,
with evident concentrations in areas near freeways and highways
that carry high traffic volumes from bridges and highways, as noted
in previous literature (UCSF SFDPH, 2004).

San Francisco census tracts exhibit a wide range in aggregate
traffic volume estimates, with a median of 703,145 and a mean of
925,544 aggregated vehicles, largely influenced by the presence of
arterial streets and freeway ramps (data not shown). A scatter plot
of traffic volume by vehicle-pedestrian injury collisions shows a
positive linear association (unadjusted Pearson R2 = .359, natural
logs, data not shown).

Table 1 shows the mean, median, standard deviation, and range
of street and land use characteristics, population characteristics,
and commuting behaviors in San Francisco, revealing the diversity
in compositional and contextual characteristics of the city’s census
tracts. A median of 64% of census-tract street length was residen-
tial (range, 23–100%), while the median percentages of census-tract
streets that were arterial with and without public transit were sim-
ilar (16% and 17%, respectively), the range in values across census
tracts was large (0–67% and 0–48%, respectively). The census-tract
median population was close to 4000—consistent with the average
tract size as defined by the U.S. Census Bureau (2001). The median
number of workers in a census tract was 1063, with a higher mean
of 3337 reflecting the skewed range of less than 100 to almost
95,000 workers. Median proportions of youth and seniors were
similar—approximately 13–14%, though both subgroups had wide
ranges across census tracts of approximately 1 to >40%. The median
proportion of residents living in poverty was 9%, and ranged from
0 to >50% across the city. A median of 6% of residents walk to work
(range, 0–42%) while an average of 16% take public transit (range,
5–49%).

With the exception of land area and proportion of residents
who are seniors, all final model variables had a positive associa-
tion with vehicle-pedestrian injury collisions (Table 2). Increases
in traffic volume, proportion of arterial streets without transit, pro-
portion of land area zoned for neighborhood commercial and mixed
residential/neighborhood commercial use, employee and resident
populations, and proportion of people living in poverty predicted
increased vehicle-pedestrian injury collisions.

The final model explains approximately 72% of the system-
atic variation in census-tract vehicle-pedestrian injury collisions.
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Table 2
Final ordinary least squares regression model of census-tract level vehicle-pedestrian injury collisions: San Francisco, California, 2001–2005 (n = 175).

Census-tract level variable Coefficient S.E. p-Value 95% CI, lower limit 95% CI,
upper limit

Partial correlation
coefficient (r)

Traffic volume (n, natural log, aggregated average daily traffic counts)a 0.753 0.115 0.000 0.526 0.981 0.454
Arterial streets, without public transit (%, street length) 0.017 0.004 0.000 0.009 0.025 0.314
Neighborhood commercial (%, land area) 0.029 0.007 0.000 0.016 0.042 0.323
Residential-neighborhood commercial (%, land area) 0.021 0.006 0.000 0.009 0.032 0.267
Land area (square miles) −0.704 0.195 0.000 −1.089 −0.319 −0.271
Employee population (n, natural log) 0.228 0.046 0.000 0.136 0.319 0.358
Resident population (n) 0.00010 0.00003 0.000 0.00005 0.00015 0.303
Living below the poverty level last year (%, resident population) 0.019 0.006 0.003 0.006 0.031 0.228
Age 65 and older (%, resident population) −0.016 0.007 0.013 −0.029 −0.003 −0.192
Constant −9.954 1.283 0.000 −12.488 −7.420

Adjusted Pearson R2 0.7154

a Excludes grade-separated street segments inaccessible to pedestrians.

Traffic volume had the highest adjusted partial correlation with
vehicle-pedestrian injury collisions (r = .454), followed by the num-
ber of employees (r = .358), proportion of land zoned neighborhood
commercial (r = .323), proportion of arterial streets without transit
(r = .314), and resident population (r = .303).

Since we used a natural log transformation for both the traf-
fic volume and employee population variables, the interpretation
of their coefficients is equivalent to the power function described
in Formula (1.1) (assuming all other final model covariates are
held constant). Fig. 1 illustrates the power function’s (PF) pre-
dictions of percent change in vehicle-pedestrian injury collisions
based on percent change in traffic volume at varying ˇ. Adjusting
for the other covariates, our final model (Fig. 1, FM) is equiva-
lent to a power function with ˇ = 0.753 (Table 2, coefficient on
log traffic volume). Therefore, a 15% increase in census-tract traffic
volume is associated with an approximate 11% increase in vehicle-
pedestrian injury collisions ((1.15)0.753 − 1 = 11.1%). Similarly, a 15%
increase in area employees (e.g., from 10% to 11.5%) predicts an
approximately 3% increase in vehicle-pedestrian injury collisions
((1.15)0.228 − 1 = 3.2%).

Model coefficients for independent variables that were not
log transformed estimate the change in the log count of vehicle-
pedestrian injury collisions per unit increase in the predictor.
For example, a 5-unit increase in the proportion of census-
tract street length that is arterial (without transit) is associated
with an approximately 8% change in vehicle-pedestrian injury
collisions (exp(5*0.017) = 1.08). Similarly, an increase in resident
population of 500 people would predict an approximately 5%
(exp(500*0.0001) = 1.05) increase in vehicle-pedestrian injury col-
lisions.

4. Discussion

In San Francisco, California, in a multivariate regression model at
the census-tract level, statistically significant predictors of vehicle-
pedestrian injury collisions include traffic volume, arterial streets
without public transit, proportions of land area zoned for neighbor-
hood commercial use and residential-neighborhood commercial
use, land area, employee population, resident population, propor-
tion of people living in poverty, and proportion of people aged
65 and over. All model variables had a positive association with
vehicle-pedestrian injury collisions, with the exception of land area
(its increase potentially capturing decreasing population density)
and proportion of the population that are seniors.

Comparing predicted percent change in vehicle-pedestrian
injury collisions based on our final model with those based on
the simpler power function illustrates that variables in addition
to traffic volume – including built environment characteristics that

are potential pedestrian attractors (neighborhood commercial dis-
tricts) and area-level population characteristics that are potential
proxies for pedestrian activity (resident and employee populations)
– contribute significant explanatory power to the model. While
our results are specific to San Francisco, California, our conceptual
model (Fig. 2) and the findings of this novel approach to estimating
the impact of area-level changes on vehicle-pedestrians collisions
may inform models in other urban areas. We next discuss potential
strengths and limitations of this approach.

We used census tracts as our unit of analysis, ideal for small area-
level analysis as they are created to be relatively homogeneous with
respect to demographic characteristics (U.S. Census Bureau, 2001)
and census data is publicly available. Additionally, U.S. Census data
for number of employees, resident socioeconomic data, and com-
mute behaviors is available at the census-tract level, but not at a
smaller area level. Other potential data sources include the Ameri-
can Community Survey. Area-specific data on number of residents,
employees, traffic, streets, land use and other environmental fac-
tors are routinely collected, analyzed and reported in local planning
processes—which would enable the model to be applied to predict
the impacts of large development projects on vehicle-pedestrian
injury collisions.

Our final model of vehicle-pedestrian injury collisions is an eco-
logical analysis (i.e., all units of analysis are at the census-tract level)
using both aggregate (summaries of observations derived from
individuals) and environmental (physical characteristics) variables.
An ecological fallacy occurs when one makes (incorrect) causal infer-
ences about associations between individual-level variables based
on observed associations in ecological analyses. In applying and
interpreting our area-level pedestrian injury collision model, we
intend to make inferences to areas; no causal inferences are made
at the level of the individual.

Underreporting of collisions could affect model results. Based
on a comparison of SWITRS and hospital records in 2000–2001,
Sciortino et al. (2005b) found that SWITRS under-reported San
Francisco pedestrian injuries by 21% (using San Francisco General
Hospital medical records as a gold standard), with African Ameri-
cans and males less likely to have a SWITRS-reported injury. This
ascertainment bias could have caused our model to underesti-
mate area-level pedestrian injuries, particularly in predominantly
African American neighborhoods. Because area-level racial/ethnic
composition is highly correlated with poverty, this bias may have
resulted in an underestimate of the effect of poverty, which may
partially capture disparities in built environmental conditions or
increased pedestrian activity among less auto-dependent popula-
tions.

We aggregated vehicle-pedestrian injury collision data by cen-
sus tract, after geocoding collisions to the nearest intersection. This
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could result in erroneous census-tract assignment for some col-
lisions that fall on census-tract boundaries. However, we do not
have reason to believe that there would be systematic bias in this
error.

Actual pedestrian volume data was not available. Significant pre-
dictors in our final model were number of residents, employees, and
proportion of land zoned neighborhood commercial/residential-
neighborhood commercial—potential partial proxies for pedestrian
activity and pedestrian attractors. As previously mentioned,
researchers have found that pedestrian volumes or proxy variables
are associated with increased pedestrian injury risk that is attenu-
ated as pedestrian volumes increase (Geyer et al., 2005; Jacobsen,
2003). While the commuting via walking variable was not a signif-
icant predictor in our final model, the log-transformed employee
population variable was a significant strong predictor. An attenu-
ated relationship was not found for resident population, potentially
because census-tract boundaries are informed by resident popula-
tion size and therefore have less variation across the city. A spatial
analysis of pedestrian collisions in Hawaii also found both resi-
dent population and commercial areas were positively associated
with pedestrian collisions; however, total jobs was not a statisti-
cally significant predictor for this analysis which focused on land
use, population, employment and economic variables—potentially
due to regional differences (Kim et al., 2006).

We were not able to include a reliable vehicle speed assess-
ment variable. Vehicle speed strongly predicts injury severity—the
chance of a fatal vehicle-pedestrian collision increasing from 5%
at 20 mph to 85% at 40 mph (UK Department of Transportation,
1987). Our model did not distinguish collisions by severity, a ques-
tion for which vehicle speed data would be more salient. The
street type variables we did include were associated with both
vehicle-pedestrian injury collisions and traffic volume, and were
potentially proxies for vehicle speeds or other street characteris-
tics for which we did not have citywide data (e.g., number of lanes,
street width).

We repeated these analyses using a negative binomial regres-
sion model and obtained very similar coefficients and standard
errors. We used the OLS model for our final analysis based on our
stated interest in developing a model for practical application that
can be readily applied and interpreted, its transparency preferable
for establishing and understanding the causal relationship between
traffic volume and vehicle-pedestrian injury collisions. An assump-
tion when using a simple OLS approach is that the dependent
variable values are linearly distributed, with a 1-unit change in an
independent variable x predicting the same corresponding change
in the dependent variable across all values of x. We adjusted for
the non-linear relationship between collisions and the independent
variables traffic volume and employee population using a natural
log transformation of those variables. Once a causal relationship
between traffic volume and collisions is established, it is likely that
advanced statistical techniques incorporating both linear and non-
linear approaches, such as neural networks, may improve model
prediction (Tu, 1996).

Our results are partly consistent with those reported in a pre-
vious study of 1990 vehicle-pedestrian injury collisions in San
Francisco census tracts. LaScala et al. (2000) reported a signifi-
cant, positive association with traffic flow, resident population,
and proportion unemployed, and a significant, negative associa-
tion with proportion with a high school diploma or higher—similar
to our findings regarding increased risk with a higher proportion
of poverty, higher traffic volumes and more residents. Proportion
of the resident population that was male also had a significant
positive association in their model and proportion aged 0–15 was
inversely associated with vehicle-pedestrian injury collisions; we
did not include proportion male population as a potential predictor,

and proportion of the population aged 0–15 was not a significant
predictor in our final model. This difference could be explained by
the correlation of land use and street characteristics (only included
in our model) with population characteristics (such as age dis-
tribution) in San Francisco census tracts. Similar to our results,
proportion of seniors age 55 and older was inversely associated
with pedestrian injury collisions. This 1990 study did not explore
employee population, street type or land use variables (other than
bars, restaurants, alcohol outlets per kilometer roadway, which
were not significantly associated with overall vehicle-pedestrian
injury collisions). La Scala et al. standardized their log-transformed
pedestrian injury outcome by roadway length, which limits com-
parisons.

Similar to our findings, a recent Los Angeles study found pop-
ulation and employment density, traffic density, and land use
variables – as well as proportion of population that was Hispanic
(described as a socioeconomic variable) – predicted pedestrian
collision density (Loukaitou-Sideris et al., 2007). However, the
researchers did not explore street type variables—and proportion
of population over age 65 was not significant in their final model.
Their findings also differed from ours in that – based on ranking
of independent variable beta weights – population density was the
most predictive variable, followed by traffic density and employee
density—whereas traffic volume was the most predictive variable
in our model, followed by employee population and neighborhood
commercial land use proportion (data not shown). Notably, traffic
volume and employee populations were strong predictors in both
models.

The coefficient for (log)traffic volume in our model, 0.753, was
notably higher than the 0.5 reported for the simpler road safety
function (Lee and Abdel-Aty, 2005) as well as the 0.221 from the
Los Angeles study (Loukaitou-Sideris et al., 2007). A primary rea-
son for these differing estimates may be regional and/or geographic
differences in land use, transportation, population or other charac-
teristics (e.g., weather) that result in differences in the predictive
value of traffic volume. Understanding these differences is another
research question, requiring multi-level models and regional data.

5. Conclusion

Consistent with previous national and international findings
(Roberts et al., 1995; Lee and Abdel-Aty, 2005; Brugge et al.,
2002; LaScala et al., 2000), our study provides additional evidence
that traffic volume is a primary environmental cause of vehicle-
pedestrian injury collisions at the area level. In addition to traffic
volume, employee and resident populations, arterial streets with-
out public transit, proportions of land area zoned for neighborhood
commercial use and residential-neighborhood commercial use,
land area, proportion of people living in poverty, and proportion
of people aged 65 and over are statistically significant predictors of
vehicle-pedestrian injury collisions in a multivariate model at the
census-tract level in San Francisco, California.

We developed this model to predict vehicle-pedestrian injury
collisions resulting from land use and transportation planning
decisions—specifically, in the context of environmental impact
assessment and as required by the National Environmental Pol-
icy Act and related state laws (Bhatia and Wernham, 2008). A
bivariate power function may be used as a simple predictive tool
to forecast the impact of increased traffic on vehicle-pedestrian
injury collisions; however, a multivariate approach may provide
more defensible estimates in planning or development scenarios
which have broad impacts on an area’s land use, transportation
and population characteristics. We have used this multivariate
model to analyze the impacts of San Francisco neighborhood rezon-
ing plans on vehicle-pedestrian injury collisions, and our findings
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were incorporated in the plans’ environmental impact assessment
(SFPD, 2007). San Francisco also intends to use this model to pre-
dict collision impacts associated with area-level congestion pricing
proposals. Subsequent reports and publications will describe these
practical applications.

Micro-level (e.g., intersection) approaches that identify spe-
cific locations with existing high numbers of vehicle-pedestrian
injury collisions support targeted pedestrian safety countermea-
sures. This area-level model can similarly support pedestrian injury
prevention by justifying area-level interventions in development
and planning processes. Examples of these interventions include:
transit-oriented development that coordinates high-density land
use with public transit locations and includes street amenities
and design features that slow traffic and support safe walking;
employer-based transportation demand management programs to
incentivize commuting to work via walking, biking and public tran-
sit and decrease driving; and street design that slows traffic and
improves the quality and safety of the pedestrian environment near
land uses including residences, schools, or senior centers (VTPI,
2008).
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Appendix A. Application of the bivariate power function to
a local development project

The following application was conducted by one of the authors
(R. Bhatia) in the context of a health impact assessment of the
Oak to Ninth Development Project proposed in Oakland, California
(UCBHIG, 2006).

Traffic analysis in the proposed project’s environmental impact
report provided data on changes in traffic volume on area road-
ways. Estimates projected that the development, which includes
3100 residential units and 3500 parking spaces, would result in
an additional 27,110 daily vehicle trips external to the project. An
intersection-level traffic analysis for 51 intersections demonstrated
that those trips would increase traffic volume on surrounding
local streets, with 5% or greater cumulative increases at several
intersections. Overall, the increase in intersection vehicle vol-
umes varied considerably, ranging from 2% to 127%. The average
weighted project-related increase in vehicle volume at studied
intersections was approximately 11% after project completion; the
average cumulative increase in vehicle volume by 2025 was 45%,
including other proposed area development projects at these inter-
sections.

The Statewide Integrated Traffic Records System (SWITRS)
provided data on reported pedestrian injuries occurring in Oak-
land from 2000 to 2005. Pedestrian injuries were mapped to
intersections using ArcGIS (>90% successfully geocoded). 545
pedestrian-vehicle collisions occurred at the 51 study intersections
during 2000–2005. Since approximately 10% of collisions could not
be geocoded, the current annual average number of pedestrian
injuries in areas affected by project-traffic was assumed, approxi-
mately 100 per year. Because some pedestrian injuries may not be
reported, this may underestimate the actual number of pedestrian
injuries.

Based on a power function of vehicle volume described in For-
mula (1.1), an 11% increase in vehicle volume on all roadways in an

area with a baseline of 100 pedestrian injuries per year predicts an
increase in 5.4 injuries per year, or 268 injuries between 2025 and
2075. Based on a cumulative increase in average daily trips of 45%
in 2025, the impact is 20 injuries per year or 1000 injuries between
2025 and 2075.
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